Thorsten Kleine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9411087/publications.pdf

Version: 2024-02-01

		28274	36028
125	9,792	55	97
papers	citations	h-index	g-index
130	130	130	3667
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science, 2023, 379, .	12.6	97
2	Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteoritics and Planetary Science, 2022, 57, 261-276.	1.6	3
3	Earth's accretion inferred from iron isotopic anomalies of supernova nuclear statistical equilibrium origin. Earth and Planetary Science Letters, 2022, 577, 117245.	4.4	13
4	Contemporary formation of early Solar System planetesimals at two distinct radial locations. Nature Astronomy, 2022, 6, 72-79.	10.1	61
5	Tungsten and molybdenum isotopic evidence for an impact origin of pallasites. Earth and Planetary Science Letters, 2022, 584, 117440.	4.4	7
6	Titanium isotope systematics of refractory inclusions: Echoes of molecular cloud heterogeneity. Geochimica Et Cosmochimica Acta, 2022, 324, 44-65.	3.9	7
7	Nucleosynthetic zinc isotope anomalies reveal a dual origin of terrestrial volatiles. Icarus, 2022, 386, 115171.	2.5	26
8	The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies. Geochimica Et Cosmochimica Acta, 2021, 293, 142-186.	3.9	28
9	Ruthenium isotopic fractionation in primitive achondrites: Clues to the early stages of planetesimal melting. Geochimica Et Cosmochimica Acta, 2021, 302, 46-60.	3.9	4
10	The Loongana (CL) group of carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2021, 304, 1-31.	3.9	15
11	Tellurium isotope cosmochemistry: Implications for volatile fractionation in chondrite parent bodies and origin of the late veneer. Geochimica Et Cosmochimica Acta, 2021, 309, 313-328.	3.9	14
12	No 182W evidence for early Moon formation. Nature Geoscience, 2021, 14, 714-715.	12.9	8
13	Nucleosynthetic Pt isotope anomalies and the Hf-W chronology of core formation in inner and outer solar system planetesimals. Earth and Planetary Science Letters, 2021, 576, 117211.	4.4	27
14	Late accretionary history of Earth and Moon preserved in lunar impactites. Science Advances, 2021, 7, eabh2837.	10.3	10
15	Terrestrial planet formation from lost inner solar system material. Science Advances, 2021, 7, eabj7601.	10.3	49
16	Tracing dehydration and melting of the subducted slab with tungsten isotopes in arc lavas. Earth and Planetary Science Letters, 2020, 530, 115942.	4.4	22
17	The great isotopic dichotomy of the early Solar System. Nature Astronomy, 2020, 4, 32-40.	10.1	117
18	Early evolution of the solar accretion disk inferred from Cr-Ti-O isotopes in individual chondrules. Earth and Planetary Science Letters, 2020, 551, 116585.	4.4	49

#	Article	IF	Citations
19	The tungsten-182 record of kimberlites above the African superplume: Exploring links to the core-mantle boundary. Earth and Planetary Science Letters, 2020, 547, 116473.	4.4	40
20	Closure temperature of the Pd-Ag system and the crystallization and cooling history of IIIAB iron meteorites. Geochimica Et Cosmochimica Acta, 2020, 285, 193-206.	3.9	11
21	Isotopic Evolution of the Inner Solar System Inferred from Molybdenum Isotopes in Meteorites. Astrophysical Journal Letters, 2020, 898, L2.	8.3	43
22	Astronomical context of Solar System formation from molybdenum isotopes in meteorite inclusions. Science, 2020, 370, 837-840.	12.6	27
23	Origin of volatile element depletion among carbonaceous chondrites. Earth and Planetary Science Letters, 2020, 549, 116508.	4.4	41
24	Hfâ€W chronology of a macrochondrule from the L5/6 chondrite Northwest Africa 8192. Meteoritics and Planetary Science, 2020, 55, 2241-2255.	1.6	2
25	The Non-carbonaceous–Carbonaceous Meteorite Dichotomy. Space Science Reviews, 2020, 216, 1.	8.1	94
26	Non-natural ruthenium isotope ratios of the undeclared 2017 atmospheric release consistent with civilian nuclear activities. Nature Communications, 2020, 11, 2744.	12.8	13
27	A long-lived magma ocean on a young Moon. Science Advances, 2020, 6, eaba8949.	10.3	76
28	Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics. Earth and Planetary Science Letters, 2020, 534, 116065.	4.4	28
29	Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochimica Et Cosmochimica Acta, 2019, 261, 145-170.	3.9	72
30	Age and origin of IIE iron meteorites inferred from Hf-W chronology. Geochimica Et Cosmochimica Acta, 2019, 262, 92-103.	3.9	22
31	Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: Evidence from the Pilbara Craton, Western Australia. Earth and Planetary Science Letters, 2019, 528, 115841.	4.4	31
32	Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth and Planetary Science Letters, 2019, 511, 44-54.	4.4	130
33	Distinct evolution of the carbonaceous and non-carbonaceous reservoirs: Insights from Ru, Mo, and W isotopes. Earth and Planetary Science Letters, 2019, 521, 103-112.	4.4	43
34	Hf-W chronology of ordinary chondrites. Geochimica Et Cosmochimica Acta, 2019, 258, 290-309.	3.9	33
35	Are the Moon's Nearsideâ€Farside Asymmetries the Result of a Giant Impact?. Journal of Geophysical Research E: Planets, 2019, 124, 2117-2140.	3.6	32
36	Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, 2019, 3, 736-741.	10.1	120

3

#	Article	IF	Citations
37	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	1.6	73
38	Titanium isotopic evidence for a shared genetic heritage of refractory inclusions from different carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2019, 254, 40-53.	3.9	20
39	Ruthenium isotope fractionation in protoplanetary cores. Geochimica Et Cosmochimica Acta, 2018, 223, 75-89.	3.9	13
40	Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hfâ€W Chronometry of Iron Meteorites. Journal of Geophysical Research E: Planets, 2018, 123, 421-444.	3.6	10
41	Uranium isotope ratios of Muonionalusta troilite and complications for the absolute age of the IVA iron meteorite core. Earth and Planetary Science Letters, 2018, 490, 1-10.	4.4	11
42	No 182W excess in the Ontong Java Plateau source. Chemical Geology, 2018, 485, 24-31.	3.3	35
43	Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core. Geochimica Et Cosmochimica Acta, 2018, 220, 82-95.	3.9	15
44	Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica Et Cosmochimica Acta, 2018, 222, 284-304.	3.9	106
45	Nature of late accretion to Earth inferred from mass-dependent Ru isotopic compositions of chondrites and mantle peridotites. Earth and Planetary Science Letters, 2018, 494, 50-59.	4.4	15
46	A Distinct Nucleosynthetic Heritage for Early Solar System Solids Recorded by Ni Isotope Signatures. Astrophysical Journal, 2018, 862, 26.	4.5	22
47	Ti isotopic evidence for a non-CAI refractory component in the inner Solar System. Earth and Planetary Science Letters, 2018, 498, 257-265.	4.4	39
48	Transforming Dust to Planets. Space Science Reviews, 2018, 214, 1.	8.1	12
49	Tungsten Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 1-5.	0.1	0
50	Origin and Evolution of the Moon: Tungsten Isotopic Constraints. , 2018, , 1-9.		0
51	Tungsten Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 1458-1462.	0.1	0
52	Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature, 2017, 541, 525-527.	27.8	147
53	Tungsten Isotopes in Planets. Annual Review of Earth and Planetary Sciences, 2017, 45, 389-417.	11.0	78
54	Mixing and Transport of Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among Chondrules. Astrophysical Journal Letters, 2017, 841, L17.	8.3	75

#	Article	IF	CITATIONS
55	Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6712-6716.	7.1	439
56	Reconciliation of the excess 176Hf conundrum in meteorites: Recent disturbances of the Lu-Hf and Sm-Nd isotope systematics. Geochimica Et Cosmochimica Acta, 2017, 212, 303-323.	3.9	9
57	Chronology of Planetesimal Differentiation. , 2017, , 224-245.		9
58	A Low Abundance of ¹³⁵ Cs in the Early Solar System from Barium Isotopic Signatures of Volatile-depleted Meteorites. Astrophysical Journal Letters, 2017, 837, L9.	8.3	11
59	Tungsten stable isotope compositions of terrestrial samples and meteorites determined by double spike MC-ICPMS. Chemical Geology, 2017, 450, 135-144.	3.3	30
60	The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian. Geochimica Et Cosmochimica Acta, 2017, 218, 1-26.	3.9	58
61	The early differentiation of Mars inferred from Hf–W chronometry. Earth and Planetary Science Letters, 2017, 474, 345-354.	4.4	69
62	Tungsten isotopes and the origin of the Moon. Earth and Planetary Science Letters, 2017, 475, 15-24.	4.4	56
63	The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochemical Perspectives Letters, 2017, , 170-178.	5.0	53
64	The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters, 2016, 453, 171-181.	4.4	90
65	Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 2016, 454, 293-303.	4.4	220
66	A nucleosynthetic origin for the Earth's anomalous 142Nd composition. Nature, 2016, 537, 394-398.	27.8	122
67	Ruthenium stable isotope measurements by double spike MC-ICPMS. Journal of Analytical Atomic Spectrometry, 2016, 31, 1515-1526.	3.0	21
68	Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2886-2891.	7.1	109
69	Planetesimal differentiation revealed by the Hf–W systematics of ureilites. Earth and Planetary Science Letters, 2015, 430, 316-325.	4.4	42
70	Uranium isotopic composition and absolute ages of Allende chondrules. Meteoritics and Planetary Science, 2015, 50, 1995-2002.	1.6	24
71	Hf–W chronology of the eucrite parent body. Geochimica Et Cosmochimica Acta, 2015, 156, 106-121.	3.9	51
72	Lunar tungsten isotopic evidence for the late veneer. Nature, 2015, 520, 534-537.	27.8	139

#	Article	IF	CITATIONS
73	Ru isotope heterogeneity in the solar protoplanetary disk. Geochimica Et Cosmochimica Acta, 2015, 168, 151-171.	3.9	99
74	Reply to comment by Peters et al. (2015) on "Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os–180W decay system― Geochimica Et Cosmochimica Acta, 2015, 169, 240-243.	3.9	1
75	Pd–Ag chronometry of iron meteorites: Correction of neutron capture-effects and application to the cooling history of differentiated protoplanets. Geochimica Et Cosmochimica Acta, 2015, 169, 45-62.	3.9	19
76	Radiogenic Isotopes. , 2015, , 2137-2146.		0
77	Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth and Planetary Science Letters, 2014, 403, 317-327.	4.4	111
78	Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation. Earth and Planetary Science Letters, 2014, 391, 201-211.	4.4	125
79	Protracted core formation and rapid accretion of protoplanets. Science, 2014, 344, 1150-1154.	12.6	224
80	Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os–180W decay system. Geochimica Et Cosmochimica Acta, 2014, 140, 160-176.	3.9	16
81	Radiogenic Isotopes. , 2014, , 1-10.		0
82	Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth and Planetary Science Letters, 2013, 380, 77-87.	4.4	74
83	Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetesimals. Earth and Planetary Science Letters, 2013, 361, 162-172.	4.4	99
84	Core Formation and Mantle Differentiation on Mars. Space Science Reviews, 2013, 174, 27-48.	8.1	54
85	Experimental evidence for Mo isotope fractionation between metal and silicate liquids. Earth and Planetary Science Letters, 2013, 379, 38-48.	4.4	61
86	Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters, 2013, 374, 204-214.	4.4	103
87	The abundance and isotopic composition of Cd in iron meteorites. Meteoritics and Planetary Science, 2013, 48, 2597-2607.	1.6	11
88	Thermal evolution and sintering of chondritic planetesimals. Astronomy and Astrophysics, 2012, 537, A45.	5.1	67
89	Thermal history modelling of the HÂchondrite parent body. Astronomy and Astrophysics, 2012, 545, A135.	5.1	61
90	Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica Et Cosmochimica Acta, 2012, 84, 186-203.	3.9	133

#	Article	IF	CITATIONS
91	Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochimica Et Cosmochimica Acta, 2012, 85, 114-141.	3.9	68
92	Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust. Earth and Planetary Science Letters, 2012, 357-358, 298-307.	4.4	70
93	Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochimica Et Cosmochimica Acta, 2012, 99, 287-304.	3.9	75
94	NUCLEOSYNTHETIC TUNGSTEN ISOTOPE ANOMALIES IN ACID LEACHATES OF THE MURCHISON CHONDRITE: IMPLICATIONS FOR HAFNIUM-TUNGSTEN CHRONOMETRY. Astrophysical Journal Letters, 2012, 753, L6.	8.3	71
95	Core Formation and Mantle Differentiation on Mars. Space Sciences Series of ISSI, 2012, , 27-48.	0.0	0
96	Earth's patchy late veneer. Nature, 2011, 477, 168-169.	27.8	8
97	Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth and Planetary Science Letters, 2011, 312, 390-400.	4.4	256
98	Chronometry of Meteorites and the Formation of the Earth and Moon. Elements, 2011, 7, 41-46.	0.5	44
99	Broad bounds on Earth's accretion and core formation constrained by geochemical models. Nature Geoscience, 2010, 3, 439-443.	12.9	175
100	Tungsten isotopic evolution during late-stage accretion: Constraints on Earth–Moon equilibration. Earth and Planetary Science Letters, 2010, 292, 363-370.	4.4	57
101	Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009, 199, 245-249.	2.5	70
102	Hf–W thermochronometry: II. Accretion and thermal history of the acapulcoite–lodranite parent body. Earth and Planetary Science Letters, 2009, 284, 168-178.	4.4	46
103	Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth and Planetary Science Letters, 2009, 287, 77-85.	4.4	150
104	Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica Et Cosmochimica Acta, 2009, 73, 5150-5188.	3.9	521
105	The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica Et Cosmochimica Acta, 2009, 73, 5115-5136.	3.9	113
106	Early differentiation of the Earth and the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4105-4128.	3.4	30
107	Hf–W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth and Planetary Science Letters, 2008, 270, 106-118.	4.4	123
108	Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals. Geochimica Et Cosmochimica Acta, 2008, 72, 6177-6197.	3.9	139

7

#	Article	IF	Citations
109	Hafnium—Tungsten Chronometry of Planetary Accretion and Differentiation. ACS Symposium Series, 2008, , 208-230.	0.5	O
110	Hf–Nd–Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian–Pacific mantle boundary in the SW Pacific. Earth and Planetary Science Letters, 2007, 254, 377-392.	4.4	70
111	Hafnium–tungsten chronometry of angrites and the earliest evolution of planetary objects. Earth and Planetary Science Letters, 2007, 262, 214-229.	4.4	66
112	Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 2007, 450, 1206-1209.	27.8	414
113	How rapidly did Mars accrete? Uncertainties in the Hf–W timing of core formation. Icarus, 2007, 191, 497-504.	2.5	121
114	Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects. Earth and Planetary Science Letters, 2006, 242, 1-15.	4.4	158
115	Corrections and Clarifications. Science, 2006, 311, 177-177.	12.6	2
116	Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon. Science, 2005, 310, 1671-1674.	12.6	151
117	Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochimica Et Cosmochimica Acta, 2005, 69, 5805-5818.	3.9	288
118	The W isotope composition of eucrite metals: constraints on the timing and cause of the thermal metamorphism of basaltic eucrites. Earth and Planetary Science Letters, 2005, 231, 41-52.	4.4	54
119	Crustal Evolution along the Early Ordovician Protoâ€Andean Margin of Gondwana: Trace Element and Isotope Evidence from the Complejo Igneo Pocitos (Northwest Argentina). Journal of Geology, 2004, 112, 503-520.	1.4	44
120	182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochimica Et Cosmochimica Acta, 2004, 68, 2935-2946.	3.9	288
121	The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth and Planetary Science Letters, 2004, 228, 109-123.	4.4	104
122	Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 2003, 301, 84-87.	12.6	375
123	Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 2002, 418, 952-955.	27.8	714
124	Tungsten Isotopes and the Origin of Chondrules and Chondrites. , 0, , 276-299.		7
125	Sample return of primitive matter from the outer Solar System. Experimental Astronomy, 0 , , 1 .	3.7	2