
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94110/publications.pdf Version: 2024-02-01



WEIWEI CAO

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | White Blood Cell Membrane oated Nanoparticles: Recent Development and Medical Applications.<br>Advanced Healthcare Materials, 2022, 11, e2101349.                                                  | 7.6  | 55        |
| 2  | Virusâ€Mimicking Cell Membrane oated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte<br>Chemie - International Edition, 2022, 61, .                                                       | 13.8 | 62        |
| 3  | Biomembraneâ€Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical<br>Applications. Advanced Materials, 2022, 34, e2107177.                                              | 21.0 | 41        |
| 4  | Cellular Nanosponges for Biological Neutralization. Advanced Materials, 2022, 34, e2107719.                                                                                                        | 21.0 | 39        |
| 5  | Organotropic Targeting of Biomimetic Nanoparticles to Treat Lung Disease. Bioconjugate Chemistry, 2022, 33, 586-593.                                                                               | 3.6  | 7         |
| 6  | Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated<br>Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie, 2022, 134, .                                   | 2.0  | 2         |
| 7  | Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated<br>Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .            | 13.8 | 15        |
| 8  | Titelbild: Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated<br>Metalâ€Organicâ€Framework Nanoparticles (Angew. Chem. 24/2022). Angewandte Chemie, 2022, 134, . | 2.0  | 0         |
| 9  | Nanomaterials arising amid antibiotic resistance. Nature Reviews Microbiology, 2021, 19, 5-6.                                                                                                      | 28.6 | 102       |
| 10 | <scp>Cartilageâ€ŧargeting ultrasmall lipidâ€polymer</scp> hybrid nanoparticles for the prevention of cartilage degradation. Bioengineering and Translational Medicine, 2021, 6, e10187.            | 7.1  | 22        |
| 11 | Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nature Communications, 2021, 12, 1999.                                                | 12.8 | 140       |
| 12 | Nanomaterial Biointerfacing via Mitochondrial Membrane Coating for Targeted Detoxification and<br>Molecular Detection. Nano Letters, 2021, 21, 2603-2609.                                          | 9.1  | 37        |
| 13 | Genetically engineered cell membrane–coated nanoparticles for targeted delivery of dexamethasone<br>to inflamed lungs. Science Advances, 2021, 7, .                                                | 10.3 | 107       |
| 14 | ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. Journal of the American Chemical Society, 2021, 143, 12194-12201.                                           | 13.7 | 42        |
| 15 | Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis.<br>Nature Communications, 2021, 12, 4136.                                                        | 12.8 | 32        |
| 16 | Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor<br>Immunity. Advanced Materials, 2021, 33, e2103505.                                                       | 21.0 | 38        |
| 17 | Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV-2 Inhibition. Journal of the American Chemical Society, 2021, 143, 17615-17621.                                            | 13.7 | 46        |
| 18 | Nanoparticle approaches against SARS-CoV-2 infection. Current Opinion in Solid State and Materials<br>Science, 2021, 25, 100964.                                                                   | 11.5 | 21        |

| #  | Article                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cell membrane-coated nanoparticles and their biomedical applications. , 2021, , .                                                                          |      | Ο         |
| 20 | Drug Targeting via Platelet Membrane–Coated Nanoparticles. Small Structures, 2020, 1, 2000018.                                                             | 12.0 | 104       |
| 21 | Engineered Cellâ€Membraneâ€Coated Nanoparticles Directly Present Tumor Antigens to Promote<br>Anticancer Immunity. Advanced Materials, 2020, 32, e2001808. | 21.0 | 206       |
| 22 | Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Letters, 2020, 20, 5570-5574.                                                                    | 9.1  | 262       |
| 23 | A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie - International<br>Edition, 2020, 59, 10461-10465.                        | 13.8 | 26        |
| 24 | Targeted gene silencing in vivo by platelet membrane–coated metal-organic framework nanoparticles.<br>Science Advances, 2020, 6, eaaz6108.                 | 10.3 | 208       |
| 25 | Multimodal Enzyme Delivery and Therapy Enabled by Cell Membrane-Coated Metal–Organic Framework<br>Nanoparticles. Nano Letters, 2020, 20, 4051-4058.        | 9.1  | 89        |
| 26 | A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie, 2020, 132,<br>10547-10551.                                               | 2.0  | 6         |
| 27 | Recent Progress in Capturing and Neutralizing Inflammatory Cytokines. CCS Chemistry, 2020, 2, 376-389.                                                     | 7.8  | 16        |
| 28 | Cell-Membrane-Cloaked Oil Nanosponges Enable Dual-Modal Detoxification. ACS Nano, 2019, 13, 7209-7215.                                                     | 14.6 | 69        |
| 29 | Inhibition of Pathogen Adhesion by Bacterial Outer Membrane oated Nanoparticles. Angewandte<br>Chemie - International Edition, 2019, 58, 11404-11408.      | 13.8 | 114       |
| 30 | Inhibition of Pathogen Adhesion by Bacterial Outer Membrane oated Nanoparticles. Angewandte<br>Chemie, 2019, 131, 11526-11530.                             | 2.0  | 4         |
| 31 | Multiantigenic Nanotoxoids for Antivirulence Vaccination against Antibiotic-Resistant Gram-Negative<br>Bacteria. Nano Letters, 2019, 19, 4760-4769.        | 9.1  | 63        |
| 32 | Biomimetic Nanosponges Suppress In Vivo Lethality Induced by the Whole Secreted Proteins of Pathogenic Bacteria. Small, 2019, 15, e1804994.                | 10.0 | 53        |
| 33 | Direct 3D Printing of Ultralight Graphene Oxide Aerogel Microlattices. Advanced Functional<br>Materials, 2018, 28, 1707024.                                | 14.9 | 284       |
| 34 | Highly stretchable carbon aerogels. Nature Communications, 2018, 9, 881.                                                                                   | 12.8 | 202       |
| 35 | Cell Membrane Coating Nanotechnology. Advanced Materials, 2018, 30, e1706759.                                                                              | 21.0 | 1,100     |
| 36 | Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon, 2018, 133, 316-322.          | 10.3 | 167       |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018, 12, 109-116.                                                                     | 14.6 | 222       |
| 38 | Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature Nanotechnology, 2018, 13, 1182-1190.                                                            | 31.5 | 600       |
| 39 | A Defectâ€Free Principle for Advanced Graphene Cathode of Aluminumâ€Ion Battery. Advanced Materials,<br>2017, 29, 1605958.                                                                                                          | 21.0 | 280       |
| 40 | Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers. Advanced Materials, 2017, 29,<br>1606794.                                                                                                                   | 21.0 | 121       |
| 41 | Highâ€Quality Graphene Microflower Design for Highâ€Performance Li–S and Alâ€Ion Batteries. Advanced<br>Energy Materials, 2017, 7, 1700051.                                                                                         | 19.5 | 140       |
| 42 | Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano, 2017, 11, 6817-6824.                                                                                                                  | 14.6 | 297       |
| 43 | Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. ACS Applied Materials<br>& Interfaces, 2017, 9, 22628-22634.                                                                                             | 8.0  | 106       |
| 44 | Superconducting Continuous Graphene Fibers <i>via</i> Calcium Intercalation. ACS Nano, 2017, 11, 4301-4306.                                                                                                                         | 14.6 | 47        |
| 45 | Highly Stretchable Graphene Fibers with Ultrafast Electrothermal Response for Lowâ€Voltage<br>Wearable Heaters. Advanced Electronic Materials, 2017, 3, 1600425.                                                                    | 5.1  | 128       |
| 46 | MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials<br>Chemistry A, 2017, 5, 22113-22119.                                                                                              | 10.3 | 347       |
| 47 | Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity.<br>Advanced Materials, 2017, 29, 1703969.                                                                                               | 21.0 | 392       |
| 48 | Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines<br>for sepsis management. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, 11488-11493. | 7.1  | 364       |
| 49 | Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors. ACS Nano, 2017, 11, 11056-11065.                                                                                                         | 14.6 | 110       |
| 50 | Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.<br>ACS Nano, 2017, 11, 9663-9670.                                                                                                | 14.6 | 38        |
| 51 | Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC<br>Advances, 2017, 7, 33600-33605.                                                                                           | 3.6  | 53        |
| 52 | Wet‧pun Superelastic Graphene Aerogel Millispheres with Group Effect. Advanced Materials, 2017, 29, 1701482.                                                                                                                        | 21.0 | 141       |
| 53 | Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance.<br>Nanoscale, 2017, 9, 12178-12188.                                                                                                | 5.6  | 17        |
| 54 | Wood-based straightway channel structure for high performance microwave absorption. Carbon, 2017, 124, 492-498.                                                                                                                     | 10.3 | 178       |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Science Advances, 2017, 3, eaao7233.                                                                                            | 10.3 | 316       |
| 56 | Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale, 2017, 9, 18613-18618.                                                                         | 5.6  | 57        |
| 57 | Self-Assembled Colloidal Gel Using Cell Membrane-Coated Nanosponges as Building Blocks. ACS Nano, 2017, 11, 11923-11930.                                                                                         | 14.6 | 59        |
| 58 | Experimental Guidance to Graphene Macroscopic Wet-Spun Fibers, Continuous Papers, and<br>Ultralightweight Aerogels. Chemistry of Materials, 2017, 29, 319-330.                                                   | 6.7  | 43        |
| 59 | Pressure-induced structural transition of CdxZn1â°'xO alloys. Applied Physics Letters, 2016, 108, .                                                                                                              | 3.3  | 10        |
| 60 | Formation of Nanoscale Composites of Compound Semiconductors Driven by Charge Transfer. Nano<br>Letters, 2016, 16, 5247-5254.                                                                                    | 9.1  | 9         |
| 61 | Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers. ACS Nano, 2015, 9,<br>6450-6458.                                                                                                   | 14.6 | 134       |
| 62 | Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta<br>Biomaterialia, 2015, 20, 113-119.                                                                      | 8.3  | 101       |
| 63 | Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526, 118-121.                                                                                                                           | 27.8 | 1,270     |
| 64 | Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles.<br>Nanoscale, 2014, 6, 2730-2737.                                                                                  | 5.6  | 291       |
| 65 | Room-Temperature Negative Capacitance in a Ferroelectric–Dielectric Superlattice Heterostructure.<br>Nano Letters, 2014, 14, 5814-5819.                                                                          | 9.1  | 123       |
| 66 | Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano<br>Letters, 2014, 14, 2181-2188.                                                                                    | 9.1  | 1,091     |
| 67 | Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles.<br>Nanoscale, 2013, 5, 8884.                                                                                  | 5.6  | 231       |
| 68 | Origin of Different Growth Modes for Epitaxial Manganite Films. Journal of the American Ceramic<br>Society, 2013, 96, 1660-1665.                                                                                 | 3.8  | 11        |
| 69 | Physical properties of<br>Cu/La <sub>0.67</sub> Ba <sub>0.33</sub> MnO <sub>3</sub> /SrTiO <sub>3</sub> : Nb junctions with<br>ultrathin manganite layers. Journal Physics D: Applied Physics, 2011, 44, 025002. | 2.8  | 3         |
| 70 | Influence of film thickness on the physical properties of manganite heterojunctions. Journal of Applied Physics, 2011, 109, .                                                                                    | 2.5  | 7         |
| 71 | Virusâ€Mimicking Cell Membrane oated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte<br>Chemie, 0, , .                                                                                                  | 2.0  | 12        |