Weiwei Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94110/publications.pdf

Version: 2024-02-01

71 papers

11,131 citations

57758 44 h-index 91884 69 g-index

72 all docs

72 docs citations

times ranked

72

11259 citing authors

#	Article	IF	CITATIONS
1	Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526, 118-121.	27.8	1,270
2	Cell Membrane Coating Nanotechnology. Advanced Materials, 2018, 30, e1706759.	21.0	1,100
3	Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 2014, 14, 2181-2188.	9.1	1,091
4	Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature Nanotechnology, 2018, 13, 1182-1190.	31.5	600
5	Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. Advanced Materials, 2017, 29, 1703969.	21.0	392
6	Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11488-11493.	7.1	364
7	MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22113-22119.	10.3	347
8	Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Science Advances, 2017, 3, eaao7233.	10.3	316
9	Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano, 2017, 11, 6817-6824.	14.6	297
10	Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale, 2014, 6, 2730-2737.	5.6	291
11	Direct 3D Printing of Ultralight Graphene Oxide Aerogel Microlattices. Advanced Functional Materials, 2018, 28, 1707024.	14.9	284
12	A Defectâ€Free Principle for Advanced Graphene Cathode of Aluminumâ€ion Battery. Advanced Materials, 2017, 29, 1605958.	21.0	280
13	Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity. Nano Letters, 2020, 20, 5570-5574.	9.1	262
14	Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 2013, 5, 8884.	5.6	231
15	Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 2018, 12, 109-116.	14.6	222
16	Targeted gene silencing in vivo by platelet membrane–coated metal-organic framework nanoparticles. Science Advances, 2020, 6, eaaz6108.	10.3	208
17	Engineered Cellâ€Membraneâ€Coated Nanoparticles Directly Present Tumor Antigens to Promote Anticancer Immunity. Advanced Materials, 2020, 32, e2001808.	21.0	206
18	Highly stretchable carbon aerogels. Nature Communications, 2018, 9, 881.	12.8	202

#	Article	IF	CITATIONS
19	Wood-based straightway channel structure for high performance microwave absorption. Carbon, 2017, 124, 492-498.	10.3	178
20	Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon, 2018, 133, 316-322.	10.3	167
21	Wetâ€Spun Superelastic Graphene Aerogel Millispheres with Group Effect. Advanced Materials, 2017, 29, 1701482.	21.0	141
22	Highâ€Quality Graphene Microflower Design for Highâ€Performance Li–S and Alâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700051.	19.5	140
23	Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nature Communications, 2021, 12, 1999.	12.8	140
24	Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers. ACS Nano, 2015, 9, 6450-6458.	14.6	134
25	Highly Stretchable Graphene Fibers with Ultrafast Electrothermal Response for Lowâ€Voltage Wearable Heaters. Advanced Electronic Materials, 2017, 3, 1600425.	5.1	128
26	Room-Temperature Negative Capacitance in a Ferroelectric–Dielectric Superlattice Heterostructure. Nano Letters, 2014, 14, 5814-5819.	9.1	123
27	Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers. Advanced Materials, 2017, 29, 1606794.	21.0	121
28	Inhibition of Pathogen Adhesion by Bacterial Outer Membraneâ€Coated Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 11404-11408.	13.8	114
29	Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors. ACS Nano, 2017, 11, 11056-11065.	14.6	110
30	Genetically engineered cell membrane–coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Science Advances, 2021, 7, .	10.3	107
31	Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. ACS Applied Materials & amp; Interfaces, 2017, 9, 22628-22634.	8.0	106
32	Drug Targeting via Platelet Membrane–Coated Nanoparticles. Small Structures, 2020, 1, 2000018.	12.0	104
33	Nanomaterials arising amid antibiotic resistance. Nature Reviews Microbiology, 2021, 19, 5-6.	28.6	102
34	Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta Biomaterialia, 2015, 20, 113-119.	8.3	101
35	Multimodal Enzyme Delivery and Therapy Enabled by Cell Membrane-Coated Metal–Organic Framework Nanoparticles. Nano Letters, 2020, 20, 4051-4058.	9.1	89
36	Cell-Membrane-Cloaked Oil Nanosponges Enable Dual-Modal Detoxification. ACS Nano, 2019, 13, 7209-7215.	14.6	69

#	Article	IF	CITATIONS
37	Multiantigenic Nanotoxoids for Antivirulence Vaccination against Antibiotic-Resistant Gram-Negative Bacteria. Nano Letters, 2019, 19, 4760-4769.	9.1	63
38	Virusâ€Mimicking Cell Membraneâ€Coated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte Chemie - International Edition, 2022, 61, .	13.8	62
39	Self-Assembled Colloidal Gel Using Cell Membrane-Coated Nanosponges as Building Blocks. ACS Nano, 2017, 11, 11923-11930.	14.6	59
40	Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale, 2017, 9, 18613-18618.	5.6	57
41	White Blood Cell Membraneâ€Coated Nanoparticles: Recent Development and Medical Applications. Advanced Healthcare Materials, 2022, 11, e2101349.	7.6	55
42	Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Advances, 2017, 7, 33600-33605.	3.6	53
43	Biomimetic Nanosponges Suppress In Vivo Lethality Induced by the Whole Secreted Proteins of Pathogenic Bacteria. Small, 2019, 15, e1804994.	10.0	53
44	Superconducting Continuous Graphene Fibers <i>via</i> Calcium Intercalation. ACS Nano, 2017, 11, 4301-4306.	14.6	47
45	Surface Glycan Modification of Cellular Nanosponges to Promote SARS-CoV-2 Inhibition. Journal of the American Chemical Society, 2021, 143, 17615-17621.	13.7	46
46	Experimental Guidance to Graphene Macroscopic Wet-Spun Fibers, Continuous Papers, and Ultralightweight Aerogels. Chemistry of Materials, 2017, 29, 319-330.	6.7	43
47	ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. Journal of the American Chemical Society, 2021, 143, 12194-12201.	13.7	42
48	Biomembraneâ€Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Advanced Materials, 2022, 34, e2107177.	21.0	41
49	Cellular Nanosponges for Biological Neutralization. Advanced Materials, 2022, 34, e2107719.	21.0	39
50	lon Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers. ACS Nano, 2017, 11, 9663-9670.	14.6	38
51	Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Advanced Materials, 2021, 33, e2103505.	21.0	38
52	Nanomaterial Biointerfacing via Mitochondrial Membrane Coating for Targeted Detoxification and Molecular Detection. Nano Letters, 2021, 21, 2603-2609.	9.1	37
53	Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis. Nature Communications, 2021, 12, 4136.	12.8	32
54	A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie - International Edition, 2020, 59, 10461-10465.	13.8	26

#	Article	IF	Citations
55	<scp>Cartilageâ€targeting ultrasmall lipidâ€polymer</scp> hybrid nanoparticles for the prevention of cartilage degradation. Bioengineering and Translational Medicine, 2021, 6, e10187.	7.1	22
56	Nanoparticle approaches against SARS-CoV-2 infection. Current Opinion in Solid State and Materials Science, 2021, 25, 100964.	11.5	21
57	Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance. Nanoscale, 2017, 9, 12178-12188.	5.6	17
58	Recent Progress in Capturing and Neutralizing Inflammatory Cytokines. CCS Chemistry, 2020, 2, 376-389.	7.8	16
59	Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
60	Virusâ€Mimicking Cell Membrane oated Nanoparticles for Cytosolic Delivery of mRNA. Angewandte Chemie, 0, , .	2.0	12
61	Origin of Different Growth Modes for Epitaxial Manganite Films. Journal of the American Ceramic Society, 2013, 96, 1660-1665.	3.8	11
62	Pressure-induced structural transition of CdxZn1â^'xO alloys. Applied Physics Letters, 2016, 108, .	3.3	10
63	Formation of Nanoscale Composites of Compound Semiconductors Driven by Charge Transfer. Nano Letters, 2016, 16, 5247-5254.	9.1	9
64	Influence of film thickness on the physical properties of manganite heterojunctions. Journal of Applied Physics, 2011, 109, .	2.5	7
65	Organotropic Targeting of Biomimetic Nanoparticles to Treat Lung Disease. Bioconjugate Chemistry, 2022, 33, 586-593.	3.6	7
66	A Biomimetic Nanoparticle to "Lure and Kill―Phospholipaseâ€A2. Angewandte Chemie, 2020, 132, 10547-10551.	2.0	6
67	Inhibition of Pathogen Adhesion by Bacterial Outer Membraneâ€Coated Nanoparticles. Angewandte Chemie, 2019, 131, 11526-11530.	2.0	4
68	Physical properties of Cu/La _{0.67} Ba _{0.33} MnO ₃ /SrTiO ₃ : Nb junctions with ultrathin manganite layers. Journal Physics D: Applied Physics, 2011, 44, 025002.	2.8	3
69	Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles. Angewandte Chemie, 2022, 134, .	2.0	2
70	Cell membrane-coated nanoparticles and their biomedical applications. , 2021, , .		0
71	Titelbild: Membrane Cholesterol Depletion Enhances Enzymatic Activity of Cellâ€Membraneâ€Coated Metalâ€Organicâ€Framework Nanoparticles (Angew. Chem. 24/2022). Angewandte Chemie, 2022, 134, .	2.0	O