Jason Shumake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9410075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficacy of attention bias modification training for depressed adults: a randomized clinical trial. Psychological Medicine, 2022, 52, 3865-3873.	4.5	9
2	Not just "big―data: Importance of sample size, measurement error, and uninformative predictors for developing prognostic models for digital interventions. Behaviour Research and Therapy, 2022, 153, 104086.	3.1	18
3	An examination of the clinical utility of phonemic fluency in healthy adults and adults with mild cognitive impairment. Applied Neuropsychology Adult, 2022, , 1-9.	1.2	0
4	Inclusion of genetic variants in an ensemble of gradient boosting decision trees does not improve the prediction of citalopram treatment response. Scientific Reports, 2021, 11, 3780.	3.3	5
5	Multifactorial prediction of depression diagnosis and symptom dimensions. Psychiatry Research, 2021, 298, 113805.	3.3	11
6	Internet-Based Cognitive Behavioral Therapy for Depression. JAMA Psychiatry, 2021, 78, 361.	11.0	398
7	Improving prediction of real-time loneliness and companionship type using geosocial features of personal smartphone data. Smart Health, 2021, 20, 100180.	3.2	24
8	Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: a systematic review and component network meta-analysis using individual participant data. Lancet Psychiatry,the, 2021, 8, 500-511.	7.4	105
9	Symptom centrality and infrequency of endorsement identify adolescent depression symptoms more strongly associated with life satisfaction. Journal of Affective Disorders, 2021, 289, 90-97.	4.1	11
10	Change in negative attention bias mediates the association between attention bias modification training and depression symptom improvement Journal of Consulting and Clinical Psychology, 2021, 89, 816-829.	2.0	7
11	Response: Commentary: Acetaminophen Enhances the Reflective Learning Process. Frontiers in Psychology, 2020, 11, 2099.	2.1	0
12	Neurocognitive predictors of selfâ€reported reward responsivity and approach motivation in depression: A dataâ€driven approach. Depression and Anxiety, 2020, 37, 682-697.	4.1	13
13	Therapist Guided Activity Practice for Depressive Symptoms in University Students: A Randomized Controlled Trial. Cognitive Therapy and Research, 2020, 44, 499-510.	1.9	1
14	The superior longitudinal fasciculus and its functional triple-network mechanisms in brooding. NeuroImage: Clinical, 2019, 24, 101935.	2.7	22
15	A machine learning ensemble to predict treatment outcomes following an Internet intervention for depression. Psychological Medicine, 2019, 49, 2330-2341.	4.5	41
16	Predicting extinction phenotype to optimize fear reduction. Psychopharmacology, 2019, 236, 99-110.	3.1	22
17	Association between negative cognitive bias and depression: A symptom-level approach Journal of Abnormal Psychology, 2019, 128, 212-227.	1.9	66
18	Data-driven criteria to assess fear remission and phenotypic variability of extinction in rats. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170035	4.0	25

JASON SHUMAKE

#	Article	IF	CITATIONS
19	Temperamental factors in remitted depression: The role of effortful control and attentional mechanisms. Journal of Affective Disorders, 2018, 235, 499-505.	4.1	16
20	Maternal omega-3 fatty acid intake during neurodevelopment does not affect pup behavior related to depression, novelty, or learning. BMC Research Notes, 2018, 11, 812.	1.4	2
21	Attentional bias modification treatment for depression: Study protocol for a randomized controlled trial. Contemporary Clinical Trials, 2018, 75, 59-66.	1.8	4
22	Ensemble machine learning prediction of posttraumatic stress disorder screening status after emergency room hospitalization. Journal of Anxiety Disorders, 2018, 60, 35-42.	3.2	47
23	Acetaminophen enhances the reflective learning process. Social Cognitive and Affective Neuroscience, 2018, 13, 1029-1035.	3.0	6
24	Positive imagery training increases positive self-referent cognition in depression. Behaviour Research and Therapy, 2018, 111, 72-83.	3.1	22
25	Determining optimal parameters of the self-referent encoding task: A large-scale examination of self-referent cognition and depression Psychological Assessment, 2018, 30, 1527-1540.	1.5	28
26	Self-referential schemas and attentional bias predict severity and naturalistic course of depression symptoms. Cognition and Emotion, 2017, 31, 632-644.	2.0	62
27	Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning. Scientific Reports, 2017, 7, 46071.	3.3	19
28	Effectiveness of an internet intervention (Deprexis) for depression in a United States adult sample: A parallel-group pragmatic randomized controlled trial Journal of Consulting and Clinical Psychology, 2017, 85, 367-380.	2.0	47
29	The effects of respiratory sinus arrhythmia on anger reactivity and persistence in major depression. Psychophysiology, 2016, 53, 1587-1599.	2.4	8
30	Assessing Fear Following Retrieval + Extinction Through Suppression of Baseline Reward Seeking vs. Freezing. Frontiers in Behavioral Neuroscience, 2015, 9, 355.	2.0	14
31	Omega-3 fatty acids improve behavioral coping to stress in multiparous rats. Behavioural Brain Research, 2015, 279, 129-138.	2.2	9
32	Contribution of Emotional and Motivational Neurocircuitry to Cue-Signaled Active Avoidance Learning. Frontiers in Behavioral Neuroscience, 2014, 8, 372.	2.0	16
33	Impulsivity, riskâ€ŧaking, and distractibility in rats exhibiting robust conditioned orienting behaviors. Journal of the Experimental Analysis of Behavior, 2014, 102, 162-178.	1.1	21
34	Predictability and heritability of individual differences in fear learning. Animal Cognition, 2014, 17, 1207-1221.	1.8	44
35	Behavioral effects of bovine lactoferrin administration during postnatal development of rats. BioMetals, 2014, 27, 1039-1055.	4.1	14
36	Functional opposition between habenula metabolism and the brain reward system. Frontiers in Human Neuroscience, 2013, 7, 662.	2.0	11

JASON SHUMAKE

#	Article	IF	CITATIONS
37	Electrical Stimulation of Lateral Habenula during Learning: Frequency-Dependent Effects on Acquisition but Not Retrieval of a Two-Way Active Avoidance Response. PLoS ONE, 2013, 8, e65684.	2.5	18
38	The Role of Dopamine in the Context of Aversive Stimuli with Particular Reference to Acoustically Signaled Avoidance Learning. Frontiers in Neuroscience, 2012, 6, 132.	2.8	40
39	Reply to: Electrical Brain Stimulation in Depression: Which Target(s)?. Biological Psychiatry, 2011, 69, e7-e8.	1.3	4
40	Effects of ventral tegmental area stimulation on the acquisition and long-term retention of active avoidance learning. Behavioural Brain Research, 2011, 225, 515-521.	2.2	15
41	Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain. Brain Research, 2011, 1367, 198-206.	2.2	22
42	Mesolimbic effects of the antidepressant fluoxetine in Holtzman rats, a genetic strain with increased vulnerability to stress. Brain Research, 2011, 1387, 71-84.	2.2	20
43	Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats. Brain Research, 2010, 1343, 218-225.	2.2	22
44	Differential Neuromodulation of Acquisition and Retrieval of Avoidance Learning by the Lateral Habenula and Ventral Tegmental Area. Journal of Neuroscience, 2010, 30, 5876-5883.	3.6	74
45	Antidepressant-Like Effects of Medial Prefrontal Cortex Deep Brain Stimulation in Rats. Biological Psychiatry, 2010, 67, 117-124.	1.3	284
46	Novelty-evoked activity in open field predicts susceptibility to helpless behavior. Physiology and Behavior, 2010, 101, 746-754.	2.1	30
47	Chronic 13-cis-retinoic acid administration disrupts network interactions between the raphe nuclei and the hippocampal system in young adult mice. European Journal of Pharmacology, 2009, 605, 68-77.	3.5	21
48	Adolescent female rats are more resistant than males to the effects of early stress on prefrontal cortex and impulsive behavior. Developmental Psychobiology, 2009, 51, 277-288.	1.6	39
49	Strain, sex, and open-field behavior: Factors underlying the genetic susceptibility to helplessness. Behavioural Brain Research, 2009, 201, 257-264.	2.2	42
50	Network model of fear extinction and renewal functional pathways. Neuroscience, 2007, 145, 423-437.	2.3	30
51	Methylene blue facilitates the extinction of fear in an animal model of susceptibility to learned helplessness. Neurobiology of Learning and Memory, 2007, 87, 209-217.	1.9	33
52	Effects of maternal separation, early handling, and standard facility rearing on orienting and impulsive behavior of adolescent rats. Behavioural Processes, 2006, 71, 51-58.	1.1	99
53	Chronic Administration of 13-Cis-Retinoic Acid Increases Depression-Related Behavior in Mice. Neuropsychopharmacology, 2006, 31, 1919-1927.	5.4	96
54	Behavioral characteristics of rats predisposed to learned helplessness: Reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behavioural Brain Research, 2005, 164, 222-230.	2.2	98

JASON SHUMAKE

#	Article	IF	CITATIONS
55	Brain differences in newborn rats predisposed to helpless and depressive behavior. Brain Research, 2004, 1030, 267-276.	2.2	48
56	Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Research, 2003, 963, 274-281.	2.2	197
57	Brain Systems Underlying Susceptibility to Helplessness and Depression. Behavioral and Cognitive Neuroscience Reviews, 2003, 2, 198-221.	3.9	119
58	Metabolic Mapping of Mouse Brain Activity after Extinction of a Conditioned Emotional Response. Journal of Neuroscience, 2003, 23, 5740-5749.	3.6	127
59	Dissociation of septo-hippocampal metabolism in the congenitally helpless rat. Neuroscience, 2002, 114, 373-377.	2.3	38
60	Hypermetabolism of paraventricular hypothalamus in the congenitally helpless rat. Neuroscience Letters, 2001, 311, 45-48.	2.1	39
61	Congenital helpless rats as a genetic model for cortex metabolism in depression. NeuroReport, 2000, 11, 3793-3798.	1.2	57