Muhammad Mohiuddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The growth of xenotransplanted hearts can be reduced with growth hormone receptor knockout pig donors. Journal of Thoracic and Cardiovascular Surgery, 2023, 165, e69-e81.	0.8	53
2	Preclinical rationale and current pathways to support the first human clinical trials in cardiac xenotransplantation. Human Immunology, 2023, 84, 34-42.	2.4	4
3	An intrinsic link to an extrinsic cause of cardiac xenograft growth after xenotransplantation. Xenotransplantation, 2022, , e12724.	2.8	3
4	Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation, 2022, 29, e12744.	2.8	64
5	Cardiac Xenotransplantation: Progress in Preclinical Models and Prospects for Clinical Translation. Transplant International, 2022, 35, 10171.	1.6	10
6	Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. New England Journal of Medicine, 2022, 387, 35-44.	27.0	270
7	Recent advances in porcine cardiac xenotransplantation: from aortic valve replacement to heart transplantation. Expert Review of Cardiovascular Therapy, 2022, 20, 597-608.	1.5	6
8	Recent progress and remaining hurdles toward clinical xenotransplantation. Xenotransplantation, 2021, 28, e12681.	2.8	21
9	Blood Cardioplegia Induction, Perfusion Storage and Graft Dysfunction in Cardiac Xenotransplantation. Frontiers in Immunology, 2021, 12, 667093.	4.8	20
10	Xenotransplantation Is the Future of Pediatric Cardiac Surgeryâ \in $^{ }_{ }$. Annals of Thoracic Surgery, 2021, , .	1.3	1
11	Surgical techniques for aortic valve xenotransplantation. Journal of Cardiothoracic Surgery, 2021, 16, 358.	1.1	3
12	Early Experience With Preclinical Perioperative Cardiac Xenograft Dysfunction in a Single Program. Annals of Thoracic Surgery, 2020, 109, 1357-1361.	1.3	16
13	4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Science Advances, 2020, 6, eabb5067.	10.3	118
14	Heterotopic Porcine Cardiac Xenotransplantation in the Intra-Abdominal Position in a Non-Human Primate Model. Scientific Reports, 2020, 10, 10709.	3.3	15
15	Intra-Abdominal Heterotopic Cardiac Xenotransplantation: Pearls and Pitfalls. Frontiers in Cardiovascular Medicine, 2019, 6, 95.	2.4	3
16	Xenotransplantation: A Step Closer to Clinical Reality?. Transplantation, 2019, 103, 453-454.	1.0	7
17	Regulatory barriers to xenotransplantation. Current Opinion in Organ Transplantation, 2019, 24, 522-526.	1.6	13
18	Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation, 2019, 26, e12465.	2.8	43

#	Article	IF	CITATIONS
19	<scp>CD</scp> 4+ <scp>CD</scp> 25 ^{Hi} FoxP3+ regulatory T cells in longâ€term cardiac xenotransplantation. Xenotransplantation, 2018, 25, e12379.	2.8	17
20	Circulating cell-free DNA as a biomarker of tissue injury: Assessment in a cardiac xenotransplantation model. Journal of Heart and Lung Transplantation, 2018, 37, 967-975.	0.6	25
21	Consideration of appropriate clinical applications for cardiac xenotransplantation. Clinical Transplantation, 2018, 32, e13330.	1.6	4
22	3D bioprinting for cardiovascular regeneration and pharmacology. Advanced Drug Delivery Reviews, 2018, 132, 252-269.	13.7	115
23	Encouraging experience using multiâ€ŧransgenic xenografts in a pigâ€ŧoâ€baboon cardiac xenotransplantation model. Xenotransplantation, 2017, 24, e12330.	2.8	21
24	Regulation of Clinical Xenotransplantation—Time for a Reappraisal. Transplantation, 2017, 101, 1766-1769.	1.0	57
25	JOINT <scp>FDA</scp> â€ <scp>IXA</scp> SYMPOSIUM, SEPTEMBER 20, 2017. Xenotransplantation, 2017, 24, e12365.	2.8	12
26	Selection of Patients for Initial Clinical Trials of Solid Organ Xenotransplantation. Transplantation, 2017, 101, 1551-1558.	1.0	59
27	Report from IPITA-TTS Opinion Leaders Meeting on the Future of Î ² -Cell Replacement. Transplantation, 2016, 100, S1-S44.	1.0	66
28	Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature Communications, 2016, 7, 11138.	12.8	351
29	First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Executive summary. Xenotransplantation, 2016, 23, 3-13.	2.8	64
30	Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathwayâ€regulatory protein. Xenotransplantation, 2015, 22, 310-316.	2.8	79
31	Current status of pig heart xenotransplantation. International Journal of Surgery, 2015, 23, 234-239.	2.7	71
32	Role of anti D40 antibodyâ€mediated costimulation blockade on nonâ€Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pigâ€toâ€baboon model. Xenotransplantation, 2014, 21, 35-45.	2.8	77
33	Regulatory T cells enhance mesenchymal stem cell survival andÂproliferation following autologous cotransplantation in ischemic myocardium. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1131-1137.	0.8	28
34	Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1106-1114.	0.8	111
35	B-Cell Depletion Extends the Survival of GTKO.hCD46Tg Pig Heart Xenografts in Baboons for up to 8 Months. American Journal of Transplantation, 2012, 12, 763-771.	4.7	124
36	Exâ€vivo expanded baboon CD4 ⁺ CD25 ^{Hi} Treg cells suppress baboon antiâ€pig T and B cell immune response. Xenotransplantation, 2012, 19, 102-111.	2.8	21

#	Article	IF	CITATIONS
37	Left Ventricular Pressure Measurement by Telemetry Is an Effective Means to Evaluate Transplanted Heart Function in Experimental Heterotopic Cardiac Xenotransplantation. Transplantation Proceedings, 2010, 42, 2152-2155.	0.6	19
38	Surgical and Nonsurgical Complications of a Pig to Baboon Heterotopic Heart Transplantation Model. Transplantation Proceedings, 2010, 42, 2149-2151.	0.6	13
39	Rapamycin Promotes the Enrichment of CD4+CD25hiFoxP3+ T Regulatory Cells From NaÃ ⁻ ve CD4+ T Cells of Baboon That Suppress Antiporcine Xenogenic Response In Vitro. Transplantation Proceedings, 2009, 41, 418-421.	0.6	27
40	Clinical Xenotransplantation of Organs: Why Aren't We There Yet?. PLoS Medicine, 2007, 4, e75.	8.4	14
41	Cutting Edge: Transplant Tolerance Induced by Anti-CD45RB Requires B Lymphocytes. Journal of Immunology, 2007, 178, 6028-6032.	0.8	90
42	Characterization and expansion of baboon CD4 ⁺ CD25 ⁺ Treg cells for potential use in a nonâ€human primate xenotransplantation model. Xenotransplantation, 2007, 14, 298-308.	2.8	39
43	T-reg Mediated Suppression of the Allograft Response in the Draining Lymph Node. Transplantation, 2006, 81, 1063-1066.	1.0	8
44	Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nature Medicine, 2006, 12, 301-303.	30.7	499
45	Evidence for a critical T cell - B cell interaction in tolerance induced by anti-CD45RB. Journal of the American College of Surgeons, 2005, 201, S92.	0.5	0
46	Transplantation for Type I Diabetes. Annals of Surgery, 2004, 240, 631-643.	4.2	92
47	Mouse-heart grafts expressing an incompatible carbohydrate antigen. II. Transition from accommodation to tolerance. Transplantation, 2004, 77, 366-373.	1.0	25
48	Antibody-mediated accommodation of heart grafts expressing an incompatible carbohydrate antigen. Transplantation, 2003, 75, 258-262.	1.0	42
49	Tolerance induction to a mammalian blood group—like carbohydrate antigen by syngeneic lymphocytes expressing the antigen, II: tolerance induction on memory B cells. Blood, 2003, 102, 229-236.	1.4	26
50	Development of tolerance to experimental cardiac allografts in utero: updated in 2001. Annals of Thoracic Surgery, 2001, 71, 755-756.	1.3	1
51	Long-term survival of cardiac xenografts in fully xenogeneic (mouse → rat) bone marrow chimeras. Annals of Thoracic Surgery, 2001, 72, 740-745.	1.3	6
52	Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature, 2000, 407, 90-94.	27.8	374
53	Mixed xenogeneic hematopoietic chimerism (mouse → rat) induces tolerance to donor heart grafts. Journal of the American College of Surgeons, 2000, 191, S60-S61.	0.5	0
54	Multilineage bone marrow chimerism produces cellular and humoral tolerance in a mouse-to-rat cardiac xenograft. Transplantation Proceedings, 2000, 32, 1029-1030.	0.6	2

#	Article	IF	CITATIONS
55	Induction of tolerance to an "untolerizable―strain by double-strain intrathymic inoculation in experimental rat cardiac transplantation. Transplantation Proceedings, 1999, 31, 838-839.	0.6	Ο
56	Tolerance to Cardiac Allografts Requires a Time Lag between Intrathymic Treatment and Transplantation. Journal of Surgical Research, 1996, 63, 83-85.	1.6	2
57	Fetal inoculation with donor cells in cardiac xenotransplantation. Annals of Thoracic Surgery, 1996, 62, 1360-1363.	1.3	9
58	Improved experimental cardiac xenograft survival with cyclophosphamide and intrathymic donor cells. Xenotransplantation, 1996, 3, 260-263.	2.8	1
59	Induction of tolerance to an experimental cardiac allograft through intrathymic inoculation of class II major histocompatibility complex disparate antigens. Journal of Thoracic and Cardiovascular Surgery, 1996, 112, 1315-1318.	0.8	1
60	T-cell receptor expression in C57BL/6 mice that reject or are rendered tolerant to bm1 cardiac grafts. Journal of Thoracic and Cardiovascular Surgery, 1996, 112, 310-313.	0.8	5
61	Durability of donor-specific and organ-specific heart transplant tolerance induced by intrathymic pretreatment with allogeneic spleen cells. Journal of Thoracic and Cardiovascular Surgery, 1996, 111, 429-431.	0.8	3
62	EFFECTS OF VESNARINONE, A NOVEL ORALLY ACTIVE INOTROPIC AGENT WITH AN IMMUNOSUPPRESSIVE ACTION, ON EXPERIMENTAL CARDIAC TRANSPLANTATION IN RATS. Transplantation, 1996, 62, 1540-1543.	1.0	3
63	Suppressor cells and intrathymic inoculation of donor alloantigens in cardiac transplantation. Annals of Thoracic Surgery, 1995, 60, 1683-1685.	1.3	1
64	Histocompatibility differences and cardiac transplant tolerance produced by intrathymic pretreatment. Journal of Thoracic and Cardiovascular Surgery, 1994, 107, 1472-1475.	0.8	7
65	Development of tolerance to experimental cardiac allografts in utero. Annals of Thoracic Surgery, 1994, 57, 72-75.	1.3	11
66	Tolerance to experimental cardiac allografts produced by neonatal intrathymic injection of donor cells. Annals of Thoracic Surgery, 1994, 58, 1316-1318.	1.3	3
67	Experiments in cardiac xenotransplantation. Journal of Thoracic and Cardiovascular Surgery, 1993, 106, 632-635.	0.8	10
68	Xenotransplantation: A New Era. Frontiers in Immunology, 0, 13, .	4.8	21