
Inas M Alnashef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9409523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical and experimental evidence for the use of natural deep eutectic solvents to increase the solubility and extractability of curcumin. Journal of Molecular Liquids, 2022, 359, 119149.	2.3	9
2	Bio-based herding and gelling agents from cholesterol powders and suspensions in organic liquids for effective oil spill clean-up. Chemical Engineering Journal Advances, 2022, 12, 100357.	2.4	2
3	Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents: A parametric study. Separation and Purification Technology, 2021, 256, 117861.	3.9	48
4	Molecular-Based Guide to Predict the pH of Eutectic Solvents: Promoting an Efficient Design Approach for New Green Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 5783-5808.	3.2	44
5	Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: Applications in humic acid removal and oil/water emulsion separation. Chemical Engineering Research and Design, 2021, 148, 813-824.	2.7	44
6	Multicomponent extraction of aromatics and heteroaromatics from diesel using acidic eutectic solvents: Experimental and COSMO-RS predictions. Journal of Molecular Liquids, 2021, 336, 116575.	2.3	37
7	The subtle but substantial distinction between ammonium- and phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2021, 332, 115838.	2.3	17
8	Surface adsorption of Crizotinib on carbon and boron nitride nanotubes as Anti-Cancer drug Carriers: COSMO-RS and DFT molecular insights. Journal of Molecular Liquids, 2021, 338, 116666.	2.3	37
9	Computational modeling of polydecanediol-co-citrate using benzalkonium chloride-based hydrophobic eutectic solvents: COSMO-RS, reactivity, and compatibility insights. Journal of Molecular Liquids, 2021, 339, 116674.	2.3	18
10	Preparation of sustainable activated carbon-alginate beads impregnated with ionic liquid for phenol decontamination. Journal of Cleaner Production, 2021, 321, 128899.	4.6	20
11	Liquification of 2,2,4-trimethyl-1,3-pentanediol into hydrophobic eutectic mixtures: A multi-criteria design for eco-efficient boron recovery. Chemical Engineering Journal, 2021, 426, 131342.	6.6	24
12	Green Extraction of Volatile Fatty Acids from Fermented Wastewater Using Hydrophobic Deep Eutectic Solvents. Fermentation, 2021, 7, 226.	1.4	26
13	Utilization of Deep Eutectic Solvents to Reduce the Release of Hazardous Gases to the Atmosphere: A Critical Review. Molecules, 2021, 26, 75.	1.7	40
14	Polyethylene glycol-based deep eutectic solvents as a novel agent for natural gas sweetening. PLoS ONE, 2020, 15, e0239493.	1.1	13
15	Extraction of Thiophene, Pyridine, and Toluene from <i>n</i> -Decane as a Diesel Model Using Betaine-Based Natural Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 5443-5457.	1.0	36
16	Predicting the density and viscosity of hydrophobic eutectic solvents: towards the development of sustainable solvents. Green Chemistry, 2020, 22, 8511-8530.	4.6	84
17	Impregnation of polyethylene membranes with 1-butyl-3-methylimidazolium dicyanamide ionic liquid for enhanced removal of Cd2+, Ni2+, and Zn2+ from aqueous solutions. Journal of Molecular Liquids, 2020, 318, 113981.	2.3	7
18	Single layer Graphene Oxide functionalized with Ionic Liquid for Selective Removal of Inorganic Salts.		0

, 2020, , .

#	Article	IF	CITATIONS
19	Thermal Conductivities of Choline Chloride-Based Deep Eutectic Solvents and Their Mixtures with Water: Measurement and Estimation. Molecules, 2020, 25, 3816.	1.7	20
20	Deep Eutectic Solvent Assisted Dispersion of Carbon Nanotubes in Water. Frontiers in Chemistry, 2020, 8, 808.	1.8	16
21	Quantitative structure properties relationship for deep eutectic solvents using Sσ-profile as molecular descriptors. Journal of Molecular Liquids, 2020, 309, 113165.	2.3	40
22	Combined Extractive Dearomatization, Desulfurization, and Denitrogenation of Oil Fuels Using Deep Eutectic Solvents: A Parametric Study. Industrial & Engineering Chemistry Research, 2020, 59, 11723-11733.	1.8	34
23	Extraction of pyridine from n-alkane mixtures using methyltriphenylphosphonium bromide-based deep eutectic solvents as extractive denitrogenation agents. Fluid Phase Equilibria, 2020, 517, 112622.	1.4	31
24	Prediction of Electrical Conductivity of Deep Eutectic Solvents Using COSMO-RS Sigma Profiles as Molecular Descriptors: A Quantitative Structure–Property Relationship Study. Industrial & Engineering Chemistry Research, 2020, 59, 13343-13354.	1.8	92
25	Boron extraction from aqueous medium using novel hydrophobic deep eutectic solvents. Chemical Engineering Journal, 2020, 395, 125173.	6.6	54
26	Investigation of the CO2-solubility in deep eutectic solvents using COSMO-RS and molecular dynamics methods. Journal of Molecular Liquids, 2020, 307, 113005.	2.3	46
27	Investigating the solubility of chlorophenols in hydrophobic ionic liquids. Journal of Chemical Thermodynamics, 2019, 135, 97-106.	1.0	19
28	Theoretical study of physicochemical properties of selected ammonium salt-based deep eutectic solvents. Journal of Molecular Liquids, 2019, 285, 38-46.	2.3	32
29	A quantitative prediction of the viscosity of amine based DESs using Sσ-profile molecular descriptors. Journal of Molecular Structure, 2019, 1184, 357-363.	1.8	47
30	Destruction of environmentally hazardous halogenated hydrocarbons in stable ionic liquids with superoxide ion radical. Separation and Purification Technology, 2019, 215, 134-142.	3.9	7
31	Physicochemical properties of alkanolamine-choline chloride deep eutectic solvents: Measurements, group contribution and artificial intelligence prediction techniques. Journal of Molecular Liquids, 2018, 256, 581-590.	2.3	71
32	Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Reports, 2018, 4, 77-83.	2.5	62
33	Investigating the Potential Use of Ionic Liquids in Pre-Treatment Application for Water Desalination. MATEC Web of Conferences, 2018, 187, 01003.	0.1	1
34	Removal of 2- and 3-methylthiophene from their mixtures with n-heptane using tetrahexylammonium bromide-based deep eutectic solvents as extractive desulfurization agents. Journal of Chemical Thermodynamics, 2018, 125, 172-179.	1.0	25
35	A process for combined CO2 utilization and treatment of desalination reject brine. Desalination, 2018, 442, 62-74.	4.0	26
36	Desulfurization of liquid fuel via extraction with imidazole-containing deep eutectic solvent. Green Processing and Synthesis, 2017, 6, 511-521.	1.3	16

#	Article	IF	CITATIONS
37	Potential applications of deep eutectic solvents in natural gas sweetening for CO2 capture. Reviews in Chemical Engineering, 2017, 33, .	2.3	74
38	Reviving Pretreatment Effectiveness of Deep Eutectic Solvents on Lignocellulosic Date Palm Residues by Prior Recalcitrance Reduction. Industrial & Engineering Chemistry Research, 2017, 56, 3167-3174.	1.8	74
39	Extraction of halogenated hydrocarbons using hydrophobic ionic liquids. Separation and Purification Technology, 2017, 184, 231-239.	3.9	7
40	Experimental Study of the Solubility of CO 2 in Novel Amine Based Deep Eutectic Solvents. Energy Procedia, 2017, 105, 1394-1400.	1.8	63
41	Theoretical investigation on the microstructure of triethylene glycol based deep eutectic solvents: COSMO-RS and TURBOMOLE prediction. Journal of Molecular Structure, 2017, 1141, 451-456.	1.8	28
42	Effect of PEI Impregnation on the CO2 Capture Performance of Activated Fly Ash. Energy Procedia, 2017, 114, 2243-2251.	1.8	26
43	Novel Green Solvents for CO2 Capture. Energy Procedia, 2017, 114, 2552-2560.	1.8	37
44	Computational investigation of the microstructural characteristics and physical properties of glycerol-based deep eutectic solvents. Journal of Molecular Modeling, 2017, 23, 277.	0.8	28
45	Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renewable Energy, 2017, 114, 480-488.	4.3	60
46	Modeling of CO ₂ Solubility in Selected Imidazolium-Based Ionic Liquids. Chemical Engineering Communications, 2017, 204, 205-215.	1.5	22
47	Removal of Thiophene from Mixtures with <i>n</i> -Heptane by Selective Extraction Using Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2016, 55, 8415-8423.	1.8	98
48	Thermogravimetric measurement of deep eutectic solvents vapor pressure. Journal of Molecular Liquids, 2016, 222, 61-66.	2.3	93
49	Efficient non-catalytic oxidative and extractive desulfurization of liquid fuels using ionic liquids. RSC Advances, 2016, 6, 103606-103617.	1.7	5
50	Investigation of Ammonium- and Phosphonium-Based Deep Eutectic Solvents as Electrolytes for a Non-Aqueous All-Vanadium Redox Cell. Journal of the Electrochemical Society, 2016, 163, A632-A638.	1.3	37
51	Dehydration of natural gas using choline chloride based deep eutectic solvents: COSMO-RS prediction. Journal of Natural Gas Science and Engineering, 2016, 30, 571-577.	2.1	43
52	Superoxide Ion: Generation and Chemical Implications. Chemical Reviews, 2016, 116, 3029-3085.	23.0	1,458
53	Analysis of operating conditions for CO 2 capturing process using deep eutectic solvents. International Journal of Greenhouse Gas Control, 2016, 47, 342-350.	2.3	45
54	The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents. PLoS ONE, 2015, 10, e0144235.	1.1	33

#	Article	IF	CITATIONS
55	Neoteric FT-IR Investigation on the Functional Groups of Phosphonium- Based Deep Eutectic Solvents. Pharmaceutica Analytica Acta, 2015, 6, .	0.2	3
56	Feasibility of phosphonium-based ionic liquids as solvents for extractive desulfurization of liquid fuels. Fluid Phase Equilibria, 2015, 401, 102-109.	1.4	36
57	Facile Route for Fuel Desulfurization Using Generated Superoxide Ion in Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 12263-12269.	1.8	23
58	Zinc (II) chloride-based deep eutectic solvents for application as electrolytes: Preparation and characterization. Journal of Molecular Liquids, 2015, 204, 76-83.	2.3	67
59	Prediction of CO2 solubility in ionic liquids using the PSRK model. Journal of Supercritical Fluids, 2015, 100, 184-193.	1.6	25
60	Stability of Superoxide Ion in Phosphonium-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 2074-2080.	1.8	13
61	Coupling the capabilities of different complexing agents into deep eutectic solvents to enhance the separation of aromatics from aliphatics. Journal of Chemical Thermodynamics, 2015, 84, 67-75.	1.0	56
62	Applicability evaluation of Deep Eutectic Solvents–Cellulase system for lignocellulose hydrolysis. Bioresource Technology, 2015, 181, 297-302.	4.8	109
63	Optimum Performance of Extractive Desulfurization of Liquid Fuels Using Phosphonium and Pyrrolidinium-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 6540-6550.	1.8	51
64	Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: Experimental design and optimization by central-composite design. Chemical Engineering and Processing: Process Intensification, 2015, 93, 10-20.	1.8	96
65	Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 221-231.	2.3	63
66	Modified Rackett equation for modelling the molar volume of deep eutectic solvents. Thermochimica Acta, 2015, 614, 185-190.	1.2	30
67	Temperature Effects on the Kinetics of Ferrocene and Cobaltocenium in Methyltriphenylphosphonium Bromide Based Deep Eutectic Solvents. Journal of the Electrochemical Society, 2015, 162, H617-H624.	1.3	6
68	Solubility of Halogenated Hydrocarbons in Hydrophobic Ionic Liquids: Experimental Study and COSMO-RS Prediction. Journal of Chemical & Engineering Data, 2015, 60, 2926-2936.	1.0	12
69	Kinetics of superoxide ion in dimethyl sulfoxide containing ionic liquids. Ionics, 2015, 21, 719-728.	1.2	10
70	Using Ionic Liquids for the Separation of Carbohydrates. International Journal of Chemical Engineering and Applications (IJCEA), 2015, 6, 417-421.	0.3	4
71	Deep oxidative desulfurization of liquid fuels. Reviews in Chemical Engineering, 2014, 30, 337-378.	2.3	149
72	A new processing route for cleaner production of biodiesel fuel using aÂcholine chloride based deep eutectic solvent. Journal of Cleaner Production, 2014, 65, 246-251.	4.6	129

#	Article	IF	CITATIONS
73	Treatment of industrial low grade palm oil via esterification reaction using sonoreactor. Journal of Industrial and Engineering Chemistry, 2014, 20, 2066-2070.	2.9	13
74	A Solid Organic Acid Catalyst for the Pretreatment of Low-Grade Crude Palm Oil and Biodiesel Production. International Journal of Green Energy, 2014, 11, 129-140.	2.1	13
75	Separation of BTEX aromatics from n-octane using a (tetrabutylammonium bromide + sulfolane) deep eutectic solvent – experiments and COSMO-RS prediction. RSC Advances, 2014, 4, 17597.	1.7	117
76	Solubility of sodium chloride in phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2014, 199, 344-351.	2.3	14
77	Solubility of Thiophene and Dibenzothiophene in Anhydrous FeCl ₃ - and ZnCl ₂ -Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2014, 53, 6815-6823.	1.8	59
78	Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues. Thermochimica Acta, 2014, 575, 40-44.	1.2	69
79	Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng–Robinson equation of state. Chemical Engineering Research and Design, 2014, 92, 1898-1906.	2.7	165
80	Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries. Renewable and Sustainable Energy Reviews, 2014, 30, 254-270.	8.2	212
81	The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts. Physical Chemistry Chemical Physics, 2013, 15, 1707-1714.	1.3	53
82	Solubility of Sodium Salts in Ammonium-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2013, 58, 2154-2162.	1.0	42
83	Prediction of refractive index and density of deep eutectic solvents using atomic contributions. Fluid Phase Equilibria, 2013, 354, 304-311.	1.4	76
84	Esterification of sludge palm oil using trifluoromethanesulfonic acid for preparation of biodiesel fuel. Korean Journal of Chemical Engineering, 2013, 30, 1229-1234.	1.2	20
85	An investigation of the reaction between 1-butyl-3-methylimidazolium trifluoromethanesulfonate and superoxide ion. Journal of Molecular Liquids, 2013, 181, 44-50.	2.3	32
86	Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere, 2013, 93, 455-459.	4.2	217
87	Solubility of Sodium Chloride in Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 11488-11493.	1.8	25
88	Phase equilibria of toluene/heptane with deep eutectic solvents based on ethyltriphenylphosphonium iodide for the potential use in the separation of aromatics from naphtha. Journal of Chemical Thermodynamics, 2013, 65, 138-149.	1.0	59
89	Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents. Journal of Solution Chemistry, 2013, 42, 2329-2341.	0.6	22
90	Are deep eutectic solvents benign or toxic?. Chemosphere, 2013, 90, 2193-2195.	4.2	473

6

#	Article	IF	CITATIONS
91	Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochimica Acta, 2013, 113, 205-211.	2.6	90
92	Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: Measurements and artificial intelligence-based prediction. Fluid Phase Equilibria, 2013, 356, 30-37.	1.4	70
93	A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Industrial Crops and Products, 2013, 46, 392-398.	2.5	80
94	A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chemical Engineering Science, 2013, 92, 81-88.	1.9	141
95	Glucose-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 2013, 178, 137-141.	2.3	285
96	Investigating the electrochemical windows of ionic liquids. Journal of Industrial and Engineering Chemistry, 2013, 19, 106-112.	2.9	242
97	Ionic liquids as novel surfactants for potential use in enhanced oil recovery. Korean Journal of Chemical Engineering, 2013, 30, 2108-2117.	1.2	82
98	Determination of cost-effective operating condition for CO2 capturing using 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Korean Journal of Chemical Engineering, 2013, 30, 2068-2077.	1.2	12
99	Elimination of All Free Glycerol and Reduction of Total Glycerol from Palm Oil-Based Biodiesel Using Non-Glycerol Based Deep Eutectic Solvents. Separation Science and Technology, 2013, 48, 1184-1193.	1.3	18
100	Fruit sugar-based deep eutectic solvents and their physical properties. Thermochimica Acta, 2012, 541, 70-75.	1.2	260
101	Densities and Viscosities of Binary Blends of Methyl Esters + Ethyl Esters and Ternary Blends of Methyl Esters + Ethyl Esters + Diesel Fuel from T = (293.15 to 358.15) K. Journal of Chemical & Engineering Data, 2012, 57, 1387-1395.	1.0	15
102	Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha. Fluid Phase Equilibria, 2012, 333, 47-54.	1.4	89
103	Synthesis of Carbonyl Compounds from Alcohols Using Electrochemically Generated Superoxide Ions in RTILs. Synthetic Communications, 2012, 42, 3632-3647.	1.1	4
104	Generation of Superoxide Ion in Pyridinium, Morpholinium, Ammonium, and Sulfonium-Based Ionic Liquids and the Application in the Destruction of Toxic Chlorinated Phenols. Industrial & Engineering Chemistry Research, 2012, 51, 10546-10556.	1.8	32
105	Long term stability of superoxide ion in piperidinium, pyrrolidinium and phosphonium cations-based ionic liquids and its utilization in the destruction of chlorobenzenes. Journal of Electroanalytical Chemistry, 2012, 664, 26-32.	1.9	55
106	Generation and stability of superoxide ion in tris(pentafluoroethyl)trifluorophosphate anion-based ionic liquids. Journal of Fluorine Chemistry, 2012, 142, 83-89.	0.9	20
107	Treatment of acidic palm oil for fatty acid methyl esters production. Chemical Papers, 2012, 66, .	1.0	10

Liquid–liquid equilibria for the ternary system (phosphonium based deep eutectic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 Td (solven 1.4 97 2012, 314, 52-59.

#	Article	IF	CITATIONS
109	Prediction of the surface tension of deep eutectic solvents. Fluid Phase Equilibria, 2012, 319, 48-54.	1.4	126
110	Generation of superoxide ion in 1-butyl-1-methylpyrrolidinium trifluoroacetate and its application in the destruction of chloroethanes. Journal of Molecular Liquids, 2012, 167, 28-33.	2.3	25
111	Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochimica Acta, 2012, 527, 59-66.	1.2	264
112	Adsorptive removal of residual catalyst from palm biodiesel: Application of response surface methodology. Hemijska Industrija, 2012, 66, 373-380.	0.3	10
113	Using Deep Eutectic Solvents Based on Methyl Triphenyl Phosphunium Bromide for the Removal of Glycerol from Palm-Oil-Based Biodiesel. Energy & Fuels, 2011, 25, 2671-2678.	2.5	189
114	Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production. Bioresource Technology, 2011, 102, 9564-9570.	4.8	37
115	Electrochemical Generation of Superoxide Ion in Ionic Liquid 1-(3-Methoxypropyl)-1-Methylpiperidinium Bis (Trifluoromethylsulfonyl) Imide. IOP Conference Series: Materials Science and Engineering, 2011, 17, 012028.	0.3	3
116	Electrochemical reduction of dioxygen in Bis (trifluoromethylsulfonyl) imide based ionic liquids. Journal of Electroanalytical Chemistry, 2011, 657, 150-157.	1.9	55
117	Prediction of deep eutectic solvents densities at different temperatures. Thermochimica Acta, 2011, 515, 67-72.	1.2	200
118	A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Processing Technology, 2010, 91, 116-120.	3.7	265
119	A novel method for the synthesis of 2-imidazolones. Tetrahedron Letters, 2010, 51, 1976-1978.	0.7	50
120	Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. Journal of Chemical & Engineering Data, 2010, 55, 4632-4637.	1.0	345
121	Using Deep Eutectic Solvents for the Removal of Clycerol from Palm Oil-Based Biodiesel. Journal of Applied Sciences, 2010, 10, 3349-3354.	0.1	129
122	Phase equilibria behavior of carbon dioxide-n-hexane-naphthalene ternary system. Korean Journal of Chemical Engineering, 2008, 25, 1495-1498.	1.2	4
123	Superoxide Electrochemistry in an Ionic Liquid. Industrial & Engineering Chemistry Research, 2002, 41, 4475-4478.	1.8	91
124	Electrochemical Generation of Superoxide in Room-Temperature Ionic Liquids. Electrochemical and Solid-State Letters, 2001, 4, D16.	2.2	149
125	Solubility and Electrical Conductivity of Common Sodium Salts in Selected Ionic Liquids. Advanced Materials Research, 0, 233-235, 2760-2764.	0.3	5