
Marc-André Langlois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9408535/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A scalable serology solution for profiling humoral immune responses to SARSâ€CoVâ€2 infection and vaccination. Clinical and Translational Immunology, 2022, 11, e1380.	3.8	65
2	Flow Virometry for Characterizing the Size, Concentration, and Surface Antigens of Viruses. Current Protocols, 2022, 2, e368.	2.9	2
3	Assessment of SARS-CoV-2 Seropositivity During the First and Second Viral Waves in 2020 and 2021 Among Canadian Adults. JAMA Network Open, 2022, 5, e2146798.	5.9	20
4	Real-world serological responses to extended-interval and heterologous COVID-19 mRNA vaccination in frail, older people (UNCoVER): an interim report from a prospective observational cohort study. The Lancet Healthy Longevity, 2022, 3, e166-e175.	4.6	9
5	Adapting Serosurveys for the SARS-CoV-2 Vaccine Era. Open Forum Infectious Diseases, 2022, 9, ofab632.	0.9	30
6	Household transmission of SARS-CoV-2 from unvaccinated asymptomatic and symptomatic household members with confirmed SARS-CoV-2 infection: an antibody-surveillance study. CMAJ Open, 2022, 10, E357-E366.	2.4	16
7	Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Advances, 2022, 6, 3593-3605.	5.2	37
8	Antibody Seronegativity in COVID-19 RT-PCR–Positive Children. Pediatric Infectious Disease Journal, 2022, 41, e318-e320.	2.0	5
9	Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies. Nature Communications, 2022, 13, .	12.8	14
10	Seropositivity and risk factors for SARS-CoV-2 infection in a South Asian community in Ontario: a cross-sectional analysis of a prospective cohort study. CMAJ Open, 2022, 10, E599-E609.	2.4	7
11	Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Research, 2021, 188, 116560.	11.3	297
12	Identification of a High-Frequency Intrahost SARS-CoV-2 Spike Variant with Enhanced Cytopathic and Fusogenic Effects. MBio, 2021, 12, e0078821.	4.1	19
13	Meta-Analysis and Structural Dynamics of the Emergence of Genetic Variants of SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 676314.	3.5	17
14	Circulating extracellular vesicles during pregnancy in women with type 1 diabetes: a secondary analysis of the CONCEPTT trial. Biomarker Research, 2021, 9, 67.	6.8	4
15	Influence of ClycoGag on the Incorporation of Host Membrane Proteins Into the Envelope of the Moloney Murine Leukemia Virus. Frontiers in Virology, 2021, 1, .	1.4	1
16	Relative Ratios of Human Seasonal Coronavirus Antibodies Predict the Efficiency of Cross-Neutralization of SARS-CoV-2 Spike Binding to ACE2. EBioMedicine, 2021, 74, 103700.	6.1	37
17	CTN 328: immunogenicity outcomes in people living with HIV in Canada following vaccination for COVID-19 (HIV-COV): protocol for an observational cohort study. BMJ Open, 2021, 11, e054208.	1.9	7
18	Reply to: Misinterpretation of solid sphere equivalent refractive index measurements and smallest detectable diameters of extracellular vesicles by flow cytometry. Scientific Reports, 2021, 11, 24170.	3.3	2

#	Article	IF	CITATIONS
19	Dried blood spot specimens for SARS-CoV-2 antibody testing: A multi-site, multi-assay comparison. PLoS ONE, 2021, 16, e0261003.	2.5	24
20	Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. Journal of Extracellular Vesicles, 2020, 9, 1816641.	12.2	70
21	Platelets Can Associate With SARS-CoV-2 RNA and Are Hyperactivated in COVID-19. Circulation Research, 2020, 127, 1404-1418.	4.5	394
22	Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Frontiers in Immunology, 2020, 11, 610688.	4.8	190
23	Intact Viral Particle Counts Measured by Flow Virometry Provide Insight into the Infectivity and Genome Packaging Efficiency of Moloney Murine Leukemia Virus. Journal of Virology, 2020, 94, .	3.4	14
24	In Vitro Hepatitis C Virus Infection and Hepatic Choline Metabolism. Viruses, 2020, 12, 108.	3.3	23
25	Effect of hemodialysis on extracellular vesicles and circulating submicron particles. BMC Nephrology, 2019, 20, 294.	1.8	19
26	A Novel Semiconductor-Based Flow Cytometer with Enhanced Light-Scatter Sensitivity for the Analysis of Biological Nanoparticles. Scientific Reports, 2019, 9, 16039.	3.3	54
27	Full-Length Glycosylated Gag of Murine Leukemia Virus Can Associate with the Viral Envelope as a Type I Integral Membrane Protein. Journal of Virology, 2018, 92, .	3.4	18
28	Characterization of molecular attributes that influence LINE-1 restriction by all seven human APOBEC3 proteins. Virology, 2018, 520, 127-136.	2.4	14
29	Selective Isolation of Retroviruses from Extracellular Vesicles by Intact Virion Immunoprecipitation. Bio-protocol, 2018, 8, e3005.	0.4	1
30	Viral core stability assay. Bio-protocol, 2018, 8, e3019.	0.4	0
31	Single-Particle Discrimination of Retroviruses from Extracellular Vesicles by Nanoscale Flow Cytometry. Scientific Reports, 2017, 7, 17769.	3.3	27
32	Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine, 2016, 34, 5082-5089.	3.8	26
33	<i>N</i> -Linked Glycosylation Protects Gammaretroviruses against Deamination by APOBEC3 Proteins. Journal of Virology, 2015, 89, 2342-2357.	3.4	24
34	RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency. Virology, 2015, 483, 141-148.	2.4	26
35	Comparative analysis of the gene-inactivating potential of retroviral restriction factors APOBEC3F and APOBEC3G. Journal of General Virology, 2015, 96, 2878-2887.	2.9	9
36	Deamination intensity profiling of human APOBEC3 protein activity along the near full-length genomes of HIV-1 and MoMLV by HyperHRM analysis. Virology, 2014, 448, 168-175.	2.4	8

#	Article	IF	CITATIONS
37	Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Research, 2013, 41, 7438-7452.	14.5	84
38	Mother's Milk and Intrinsic Immunity. Cell Host and Microbe, 2010, 8, 467-469.	11.0	1
39	The AKV Murine Leukemia Virus Is Restricted and Hypermutated by Mouse APOBEC3. Journal of Virology, 2009, 83, 11550-11559.	3.4	54
40	Mouse APOBEC3 Restricts Friend Leukemia Virus Infection and Pathogenesis In Vivo. Journal of Virology, 2008, 82, 10998-11008.	3.4	108
41	Human APOBEC3G Can Restrict Retroviral Infection in Avian Cells and Acts Independently of both UNG and SMUG1. Journal of Virology, 2008, 82, 4660-4664.	3.4	47
42	DNA Deamination in Immunity: AID in the Context of Its APOBEC Relatives. Advances in Immunology, 2007, 94, 37-73.	2.2	152
43	Insights into DNA deaminases. Nature Structural and Molecular Biology, 2007, 14, 7-9.	8.2	32
44	Cytoplasmic and Nuclear Retained DMPK mRNAs Are Targets for RNA Interference in Myotonic Dystrophy Cells. Journal of Biological Chemistry, 2005, 280, 16949-16954.	3.4	100
45	Mutational comparison of the single-domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases provides insight into their DNA target site specificities. Nucleic Acids Research, 2005, 33, 1913-1923.	14.5	162
46	HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acids Research, 2005, 33, 3866-3874.	14.5	76
47	Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions. Gene Therapy, 2003, 10, 795-802.	4.5	78
48	Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts. Molecular Therapy, 2003, 7, 670-680.	8.2	87
49	Zinc-binding Sites in the N Terminus of Mycoplasma arthritidis-derived Mitogen Permit the Dimer Formation Required for High Affinity Binding to HLA-DR and for T Cell Activation. Journal of Biological Chemistry, 2003, 278, 22309-22315.	3.4	13
50	Intracellular ribozyme applications. Biochemical Society Transactions, 2002, 30, 1140-1145.	3.4	25
51	Involvement of zinc in the binding ofMycoplasma arthritidis-derived mitogen to the proximity of the HLA-DR binding groove regardless of histidine 81 of the β chain. European Journal of Immunology, 2002, 32, 50-58.	2.9	17
52	Binding of Mycoplasma arthritidis-derived mitogen to human MHC class II molecules via its N terminus is modulated by invariant chain expression and its C terminus is required for T cell activation. European Journal of Immunology, 2000, 30, 1748-1756.	2.9	21
53	SARS-CoV-2 Seroprevalence During the First and Second Pandemic Waves in Canada. SSRN Electronic Journal, 0, , .	0.4	4