
Thomas Van Leeuwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9408293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479, 487-492.	13.7	897
2	Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochemistry and Molecular Biology, 2010, 40, 563-572.	1.2	626
3	The ABC gene family in arthropods: Comparative genomics and role inÂinsecticide transport and resistance. Insect Biochemistry and Molecular Biology, 2014, 45, 89-110.	1.2	462
4	A link between host plant adaptation and pesticide resistance in the polyphagous spider mite <i>Tetranychus urticae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E113-22.	3.3	347
5	Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus</i> , reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15.	3.3	251
6	Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany, 2015, 115, 1015-1051.	1.4	244
7	Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4407-4412.	3.3	240
8	The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 2015, 121, 12-21.	1.6	238
9	Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochemistry and Physiology, 2015, 121, 61-77.	1.6	237
10	The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites. Annual Review of Entomology, 2016, 61, 475-498.	5.7	227
11	Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5980-5985.	3.3	225
12	The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science, 2018, 27, 97-102.	2.2	197
13	Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains ofTetranychus urticae. Pest Management Science, 2005, 61, 499-507.	1.7	171
14	The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: Implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology, 2012, 42, 455-465.	1.2	161
15	Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2014, 46, 43-53.	1.2	155
16	Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory. Genome Biology and Evolution, 2016, 8, 1785-1801.	1.1	155
17	Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate Herbivore Spider Mite Â. Plant Physiology, 2014, 164, 384-399.	2.3	151
18	Salivary proteins of spider mites suppress defenses in <i>Nicotiana benthamiana</i> and promote mite reproduction. Plant Journal, 2016, 86, 119-131.	2.8	149

#	Article	IF	CITATIONS
19	Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 2004, 32, 249-261.	0.7	147
20	Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14692-14697.	3.3	144
21	A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. ELife, 2014, 3, e02365.	2.8	135
22	Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Molecular Ecology, 2015, 24, 4647-4663.	2.0	131
23	A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae. BMC Genomics, 2013, 14, 317.	1.2	118
24	Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in <i>Tetranychus urticae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5871-E5880.	3.3	114
25	The Salivary Protein Repertoire of the Polyphagous Spider Mite Tetranychus urticae: A Quest for Effectors. Molecular and Cellular Proteomics, 2016, 15, 3594-3613.	2.5	113
26	Diversity and evolution of the P450 family in arthropods. Insect Biochemistry and Molecular Biology, 2020, 127, 103490.	1.2	109
27	Acaricide resistance and resistance mechanisms in <i>Tetranychus urticae</i> populations from rose greenhouses in the Netherlands. Pest Management Science, 2011, 67, 1424-1433.	1.7	108
28	Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of <i>Tetranychus urticae</i> Koch (Acari: Tetranychidae). Bulletin of Entomological Research, 2009, 99, 23-31.	0.5	107
29	Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochemistry and Molecular Biology, 2013, 43, 544-554.	1.2	107
30	Genetic and biochemical analysis of a laboratoryâ€selected spirodiclofenâ€resistant strain of <i>Tetranychus urticae</i> Koch (Acari: Tetranychidae). Pest Management Science, 2009, 65, 358-366.	1.7	105
31	Identification of pyrethroid resistance associated mutations in the <i>para</i> sodium channel of the twoâ€spotted spider mite <i>Tetranychus urticae</i> (Acari: Tetranychidae). Insect Molecular Biology, 2009, 18, 583-593.	1.0	99
32	Mutations in the mitochondrial cytochrome <i>b</i> of <i>Tetranychus urticae</i> Koch (Acari:) Tj ETQq0 0 0 rgB 2009, 65, 404-412.	3T /Overloo 1.7	ck 10 Tf 50 2 95
33	Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics, 2013, 14, 815.	1.2	92
34	Tomato Whole Genome Transcriptional Response to <i>Tetranychus urticae</i> Identifies Divergence of Spider Mite-Induced Responses Between Tomato and <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2015, 28, 343-361.	1.4	90
35	Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari:) Tj ETQq1 1 0.784314 Molecular Biology, 2006, 36, 869-877.	ł rgBT /Ov 1.2	erlock 10 Tf. 89
36	Acetylcholinesterase point mutations in European strains of <i>Tetranychus urticae</i> (Acari:) Tj ETQq0 0 0 rgB1	/Oyerlocl	₹ 10 Tf 50 62

#	Article	IF	CITATIONS
37	High resolution genetic mapping uncovers chitin synthase-1 as the target-site ofÂthe structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2014, 51, 52-61.	1.2	83
38	A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochemistry and Molecular Biology, 2017, 80, 79-90.	1.2	82
39	Biochemical analysis of a chlorfenapyr-selected resistant strain ofTetranychus urticae Koch. Pest Management Science, 2006, 62, 425-433.	1.7	81
40	The relative contribution of target-site mutations in complex acaricide resistant phenotypes as as assessed by marker assisted backcrossing in Tetranychus urticae. Scientific Reports, 2017, 7, 9202.	1.6	81
41	The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect Biochemistry and Molecular Biology, 2014, 55, 1-8.	1.2	76
42	Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite,Tetranychus urticae. Pest Management Science, 2007, 63, 150-156.	1.7	74
43	Does host plant adaptation lead to pesticide resistance in generalist herbivores?. Current Opinion in Insect Science, 2018, 26, 25-33.	2.2	74
44	Functional characterization of the Tetranychus urticae CYP392A11, a cytochrome P450 that hydroxylates the METI acaricides cyenopyrafen and fenpyroximate. Insect Biochemistry and Molecular Biology, 2015, 65, 91-99.	1.2	72
45	The control of eriophyoid mites: state of the art and future challenges. Experimental and Applied Acarology, 2010, 51, 205-224.	0.7	70
46	Long-Term Population Studies Uncover the Genome Structure and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore <i>Tetranychus urticae</i> . Genetics, 2019, 211, 1409-1427.	1.2	70
47	Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. Pesticide Biochemistry and Physiology, 2015, 121, 53-60.	1.6	69
48	A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochemistry and Molecular Biology, 2017, 80, 101-115.	1.2	68
49	Mechanisms of Acaricide Resistance in the Two-Spotted Spider Mite Tetranychus urticae. , 2009, , 347-393.		66
50	Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. Current Opinion in Insect Science, 2020, 39, 69-76.	2.2	64
51	High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. Insect Biochemistry and Molecular Biology, 2019, 110, 19-33.	1.2	62
52	Molecular analysis of cyenopyrafen resistance in the twoâ€spotted spider mite <i>Tetranychus urticae</i> . Pest Management Science, 2016, 72, 103-112.	1.7	60
53	Crossâ€resistance risk of the novel complex <scp>II</scp> inhibitors cyenopyrafen and cyflumetofen in resistant strains of the twoâ€spotted spider mite <i>Tetranychus urticae</i> . Pest Management Science, 2014, 70, 365-368.	1.7	59
54	Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect Biochemistry and Molecular Biology, 2014, 50, 43-57.	1.2	59

#	Article	IF	CITATIONS
55	Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid. PLoS Pathogens, 2016, 12, e1005936.	2.1	58
56	Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding. Scientific Reports, 2017, 7, 42633.	1.6	58
57	Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition inTetranychus urticae. Pest Management Science, 2007, 63, 1172-1177.	1.7	55
58	Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genomics, 2015, 16, 974.	1.2	54
59	Why Do Herbivorous Mites Suppress Plant Defenses?. Frontiers in Plant Science, 2018, 9, 1057.	1.7	54
60	Genome-enabled insights into the biology of thrips as crop pests. BMC Biology, 2020, 18, 142.	1.7	54
61	Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 2009, 47, 301-309.	0.7	53
62	Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranyhus urticae. BMC Genomics, 2016, 17, 74.	1.2	53
63	Parallel evolution of cytochrome <i>b</i> mediated bifenazate resistance in the citrus red mite <i>Panonychus citri</i> . Insect Molecular Biology, 2011, 20, 135-140.	1.0	51
64	Spider mite control and resistance management: does a genome help?. Pest Management Science, 2013, 69, 156-159.	1.7	50
65	A G326E substitution in the glutamateâ€gated chloride channel 3 (GluCl3) of the twoâ€spotted spider mite <i>Tetranychus urticae</i> abolishes the agonistic activity of macrocyclic lactones. Pest Management Science, 2017, 73, 2413-2418.	1.7	50
66	Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2020, 120, 103347.	1.2	49
67	Geographical distribution and molecular insights into abamectin and milbemectin crossâ€resistance in European field populations of <i>Tetranychus urticae</i> . Pest Management Science, 2020, 76, 2569-2581.	1.7	47
68	Kin competition accelerates experimental range expansion in an arthropod herbivore. Ecology Letters, 2018, 21, 225-234.	3.0	46
69	Application of Two-spotted Spider Mite Tetranychus urticae for Plant-pest Interaction Studies. Journal of Visualized Experiments, 2014, , .	0.2	43
70	Complex Evolutionary Dynamics of Massively Expanded Chemosensory Receptor Families in an Extreme Generalist Chelicerate Herbivore. Genome Biology and Evolution, 2016, 8, 3323-3339.	1.1	42
71	Genomeâ€wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in <i>Anopheles arabiensis</i> populations from Ethiopia. Pest Management Science, 2019, 75, 1808-1818.	1.7	42
72	Reduced proinsecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite <i>Varroa destructor</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42

#	Article	IF	CITATIONS
73	A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Insect Biochemistry and Molecular Biology, 2012, 42, 881-889.	1.2	40
74	Intraguild predation by <i><scp>H</scp>armonia axyridis</i> (<scp>C</scp> oleoptera:) Tj ETQq0 0 0 rgBT /C samples. Entomological Science, 2015, 18, 130-133.	Overlock 10 T 0.3	f 50 707 Td (< 40
75	A massive incorporation of microbial genes into the genome of <i>Tetranychus urticae</i> , a polyphagous arthropod herbivore. Insect Molecular Biology, 2018, 27, 333-351.	1.0	40
76	Fitness costs of key point mutations that underlie acaricide targetâ€site resistance in the twoâ€spotted spider mite <i>Tetranychus urticae</i> . Evolutionary Applications, 2018, 11, 1540-1553.	1.5	40
77	Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae. PLoS ONE, 2017, 12, e0180658.	1.1	40
78	Systemic Use of Spinosad to Control the Two-spotted Spider Mite (Acari: Tetranychidae) on Tomatoes Grown in Rockwool. Experimental and Applied Acarology, 2005, 37, 93-105.	0.7	39
79	On the mode of action of bifenazate: New evidence for a mitochondrial target site. Pesticide Biochemistry and Physiology, 2012, 104, 88-95.	1.6	39
80	Identification and characterization of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in the spider mite <i>Tetranychus urticae</i> . Pest Management Science, 2020, 76, 1154-1163.	1.7	39
81	Fitness maximization by dispersal: evidence from an invasion experiment. Ecology, 2014, 95, 3104-3111.	1.5	38
82	Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2019, 109, 116-127.	1.2	38
83	Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Experimental and Applied Acarology, 2012, 57, 53-64.	0.7	36
84	Transcriptomic Plasticity in the Arthropod Generalist Tetranychus urticae Upon Long-Term Acclimation to Different Host Plants. G3: Genes, Genomes, Genetics, 2018, 8, 3865-3879.	0.8	36
85	QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2020, 123, 103410.	1.2	36
86	Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. Pesticide Biochemistry and Physiology, 2020, 167, 104595.	1.6	36
87	Induction of cytochrome P450 monooxygenase activity in the two-spotted spider mite Tetranychus urticae and its influence on acaricide toxicity. Pesticide Biochemistry and Physiology, 2008, 91, 128-133.	1.6	35
88	Short term transcriptional responses of P450s to phytochemicals in insects and mites. Current Opinion in Insect Science, 2021, 43, 117-127.	2.2	35
89	A molecularâ€genetic understanding of diapause in spider mites: current knowledge and future directions. Physiological Entomology, 2017, 42, 211-224.	0.6	34
90	Identification and geographical distribution ofÂpyrethroid resistance mutations in the poultry red mite <i>Dermanyssus gallinae</i> . Pest Management Science, 2020, 76, 125-133.	1.7	33

#	Article	IF	CITATIONS
91	Genome streamlining in a minute herbivore that manipulates its host plant. ELife, 2020, 9, .	2.8	33
92	The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Scientific Reports, 2017, 7, 13440.	1.6	32
93	Trait mapping in diverse arthropods by bulked segregant analysis. Current Opinion in Insect Science, 2019, 36, 57-65.	2.2	32
94	The phenylpropanoid pathway inhibitor piperonylic acid induces broadâ€spectrum pest and disease resistance in plants. Plant, Cell and Environment, 2021, 44, 3122-3139.	2.8	31
95	Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey. Experimental and Applied Acarology, 2019, 78, 343-360.	0.7	30
96	Mapping insecticide resistance and characterization of resistance mechanisms in Anopheles arabiensis (Diptera: Culicidae) in Ethiopia. Parasites and Vectors, 2017, 10, 407.	1.0	29
97	A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite <i>Tetranychus urticae</i> Exhibits Fast Host-Dependent Transcriptional Plasticity. Molecular Plant-Microbe Interactions, 2018, 31, 112-124.	1.4	29
98	Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCEO4) of <i>Tetranychus urticae</i> is associated with high levels of resistance to the ketoâ€enol acaricide spirodiclofen. Pest Management Science, 2020, 76, 1142-1153.	1.7	29
99	Improving the compatibility of pesticides and predatory mites: recent findings on physiological and ecological selectivity. Current Opinion in Insect Science, 2020, 39, 63-68.	2.2	29
100	Untangling a <scp>G</scp> ordian knot: the role of a <scp>GluCl3 I321T</scp> mutation in abamectin resistance in <i>Tetranychus urticae</i> . Pest Management Science, 2021, 77, 1581-1593.	1.7	29
101	Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191039.	1.2	28
102	Identification and functional characterization of a novel acetyl-CoA carboxylase mutation associated with ketoenol resistance in Bemisia tabaci. Pesticide Biochemistry and Physiology, 2020, 166, 104583.	1.6	28
103	Draft Genome Assembly of the Poultry Red Mite, <i>Dermanyssus gallinae</i> . Microbiology Resource Announcements, 2018, 7, .	0.3	26
104	High-resolution genetic mapping reveals cis-regulatory and copy number variation in loci associated with cytochrome P450-mediated detoxification in a generalist arthropod pest. PLoS Genetics, 2021, 17, e1009422.	1.5	26
105	Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evolutionary Ecology, 2015, 29, 299-310.	0.5	23
106	Identification and characterization of striking multipleâ€insecticide resistance in a <i>Tetranychus urticae</i> field population from Greece. Pest Management Science, 2021, 77, 666-676.	1.7	23
107	Susceptibility of the predatory stinkbug Picromerus bidens to selected insecticides. BioControl, 2007, 52, 765-774.	0.9	22
108	<i>Tetranychus urticae</i> mites do not mount an induced immune response against bacteria. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170401.	1.2	21

#	Article	IF	CITATIONS
109	Characterization of abamectin resistance in Iranian populations of European red mite, Panonychus ulmi Koch (Acari: Tetranychidae). Crop Protection, 2019, 125, 104903.	1.0	21
110	Molecular and genetic analysis of resistance to METI-I acaricides in Iranian populations of the citrus red mite Panonychus citri. Pesticide Biochemistry and Physiology, 2020, 164, 73-84.	1.6	21
111	Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop Protection, 2020, 134, 105166.	1.0	21
112	Is the emerging mite pest <i>Aculops lycopersici</i> controllable? Global and genomeâ€based insights in its biology and management. Pest Management Science, 2021, 77, 2635-2644.	1.7	21
113	Lifeâ€history evolution in response to changes in metapopulation structure in an arthropod herbivore. Functional Ecology, 2016, 30, 1408-1417.	1.7	20
114	The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments. BMC Genomics, 2021, 22, 635.	1.2	20
115	Incidence and characterization of resistance to pyrethroid and organophosphorus insecticides in Thrips tabaci (Thysanoptera: Thripidae) in onion fields in Isfahan, Iran. Pesticide Biochemistry and Physiology, 2016, 129, 28-35.	1.6	19
116	Resistance risk assessment of the novel complex II inhibitor pyflubumide in the polyphagous pest Tetranychus urticae. Journal of Pest Science, 2020, 93, 1085-1096.	1.9	18
117	Molecular characterization of pyrethroid resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology, 2018, 148, 1-7.	1.6	16
118	Point mutations in the voltage-gated sodium channel gene associated with pyrethroid resistance in Iranian populations of the European red mite Panonychus ulmi. Pesticide Biochemistry and Physiology, 2019, 157, 80-87.	1.6	16
119	Costs and benefits of multiple mating in a species with firstâ€male sperm precedence. Journal of Animal Ecology, 2020, 89, 1045-1054.	1.3	16
120	Acaricide resistance status and identification of resistance mutations in populations of the two-spotted spider mite Tetranychus urticae from Ethiopia. Experimental and Applied Acarology, 2020, 82, 475-491.	0.7	16
121	Multiple <scp>TaqMan qPCR</scp> and droplet digital <scp>PCR</scp> (<scp>ddPCR</scp>) diagnostics for pesticide resistance monitoring and management, in the major agricultural pest <scp><i>Tetranychus urticae</i>>/scp>. Pest Management Science, 2022, 78, 263-273.</scp>	1.7	15
122	A systematic review and meta-analysis of trypanosome prevalence in tsetse flies. BMC Veterinary Research, 2017, 13, 100.	0.7	14
123	Intradiol ring cleavage dioxygenases from herbivorous spider mites as a new detoxification enzyme family in animals. BMC Biology, 2022, 20, .	1.7	14
124	Susceptibility of an organophosphate resistant strain of the two-spotted spider mite (Tetranychus) Tj ETQq0 0 C and Applied Acarology, 2009, 49, 185-192.) rgBT /Ove 0.7	erlock 10 Tf 50 13
125	Selectivity and molecular stress responses to classical and botanical acaricides in the predatory mite <i>Phytoseiulus persimilis</i> <scp>Athiasâ€Henriot</scp> (<scp>Acari: Phytoseiidae</scp>). Pest Management Science, 2022, 78, 881-895.	1.7	13
126	Over-expression in cis of the midgut P450 CYP392A16 contributes to abamectin resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2022, 142, 103709.	1.2	13

#	Article	IF	CITATIONS
127	QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2022, 145, 103757.	1.2	13
128	Adaptive divergence and post-zygotic barriers to gene flow between sympatric populations of a herbivorous mite. Communications Biology, 2021, 4, 853.	2.0	12
129	Combination of target site mutation and associated CYPs confers high-level resistance to pyridaben in Tetranychus urticae. Pesticide Biochemistry and Physiology, 2022, 181, 105000.	1.6	12
130	Structural Characterization of a Eukaryotic Cyanase from <i>Tetranychus urticae</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 5453-5462.	2.4	11
131	Identifying drivers of spatioâ€ŧemporal dynamics in barley yellow dwarf virus epidemiology as a critical factor in disease control. Pest Management Science, 2020, 76, 2548-2556.	1.7	11
132	Systemic toxicity of spinosad to the greenhouse whiteflyTrialeurodes vaporariorum and to the cotton leaf wormSpodoptera littoralis. Phytoparasitica, 2006, 34, 102-108.	0.6	10
133	The <scp>H92R</scp> substitution in <scp>PSST</scp> is a reliable diagnostic biomarker for predicting resistance to mitochondrial electron transport inhibitors of complex I in European populations of <i>Tetranychus urticae</i> . Pest Management Science, 2022, 78, 3644-3653.	1.7	10
134	Feeding History Affects Intraguild Interactions between Harmonia axyridis (Coleoptera: Coccinellidae) and Episyrphus balteatus (Diptera: Syrphidae). PLoS ONE, 2015, 10, e0128518.	1.1	9
135	Genetic analysis and screening of pyrethroid resistance mutations in Varroa destructor populations from Turkey. Experimental and Applied Acarology, 2021, 84, 433-444.	0.7	9
136	Comparing the efficiency of RNAi after feeding and injection of dsRNA in spider mites. Pesticide Biochemistry and Physiology, 2021, 179, 104966.	1.6	9
105			

#	Article	IF	CITATIONS
145	Ticks and Tick-Borne Pathogens Abound in the Cattle Population of the Rabat-Sale Kenitra Region, Morocco. Pathogens, 2021, 10, 1594.	1.2	7
146	A H258Y mutation in subunit B of the succinate dehydrogenase complex of the spider mite Tetranychus urticae confers resistance to cyenopyrafen and pyflubumide, but likely reinforces cyflumetofen binding and toxicity. Insect Biochemistry and Molecular Biology, 2022, 144, 103761.	1.2	7
147	Incidence of spiromesifen resistance and resistance mechanisms in Tetranychus urticae populations collected from strawberry production areas in Turkey. Crop Protection, 2022, 160, 106049.	1.0	7
148	Structural and functional characterization of an intradiol ring-cleavage dioxygenase from the polyphagous spider mite herbivore Tetranychus urticae Koch. Insect Biochemistry and Molecular Biology, 2019, 107, 19-30.	1.2	6
149	Editorial: Invertebrate UDP-Glycosyltransferases: Nomenclature, Diversity and Functions. Frontiers in Physiology, 2021, 12, 748290.	1.3	3
150	Interactions With Plant Defences Isolate Sympatric Populations of an Herbivorous Mite. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	3
151	A mutation in chitin synthase I associated with etoxazole resistance in the citrus red mite <i>Panonychus citri</i> (Acari: Tetranychidae) and its uneven geographical distribution in Japan. Pest Management Science, 2022, 78, 4028-4036.	1.7	3
152	Variation of diazinon and amitraz susceptibility of Hyalomma marginatum (Acari: Ixodidae) in the Rabat-Sale-Kenitra region of Morocco. Ticks and Tick-borne Diseases, 2022, 13, 101883.	1.1	2
153	Structural and functional characterization of β-cyanoalanine synthase from Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2022, 142, 103722.	1.2	2
154	Cover Image, Volume 76, Issue 8. Pest Management Science, 2020, 76, .	1.7	0
155	Mutations in chitin synthase-1 (CHS-1) confer resistance to a range of structurally diverse acaricides and insecticides. , 2016, , .		0
156	Cover Image, Volume 78, Issue 3. Pest Management Science, 2022, 78, .	1.7	0