Kenichiro Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9408091/publications.pdf

Version: 2024-02-01

51 3,280 25 41 papers citations h-index g-index

53 53 53 2571 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
	Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		
1	Animosmini necp.//www.wo.org/1000/maarimaanime		

#	Article	IF	Citations
19	Thermodynamic evidence for a field-angle-dependent Majorana gap in a Kitaev spin liquid. Nature Physics, 2022, 18, 429-435.	16.7	42
20	High-pressure phase diagrams of FeSe1â^'xTex: correlation between suppressed nematicity and enhanced superconductivity. Nature Communications, 2021, 12, 381.	12.8	41
21	Quantum-disordered state of magnetic and electric dipoles in an organic Mott system. Nature Communications, 2017, 8, 1821.	12.8	38
22	Crystallization and vitrification of electrons in a glass-forming charge liquid. Science, 2017, 357, 1381-1385.	12.6	37
23	Effects of Rattling Phonons on the Dynamics of Quasiparticle Excitation in thel²-PyrochloreKOs2O6Superconductor. Physical Review Letters, 2007, 98, 257004.	7.8	32
24	Contrasts in electron correlations and inelastic scattering between LiFeP and LiFeAs revealed by charge transport. Physical Review B, 2012, 85, .	3.2	31
25	Anomalous superfluid density in quantum critical superconductors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3293-3297. Emergence of charge degrees of freedom under high pressure in the organic dimer-Mott	7.1	26
26	insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>β</mml:mi><mml:m< td=""><td>ıo>′<td>ıml:mo></td></td></mml:m<></mml:msup></mml:mrow></mml:math>	ıo>′ <td>ıml:mo></td>	ıml : mo>
27	mathvariant="bold">2 <mml:msub><mml:mi .="" 2009,="" 2015,="" 469,="" 590-598.="" 92,="" and="" applications,="" b,="" bafe<<mi="" c:="" conductivity="" critical="" depth,="" doped="" fe-arsenide="" fields,="" in="" interplane="" isovalent="" its="" lower="" mathv.="" of="" penetration="" physica="" physical="" quasiparticle="" resistivity="" review="" superconductivity="" superconductors.="">min:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""></mml:mrow<></mml:msub></mml:mi></mml:msub>	1.2	18
28			

3

#	Article	IF	CITATIONS
37	Dimer-Mott and charge-ordered insulating states in the quasi-one-dimensional organic conductors Î'P′ - and Î'C′∲(BPDT-TTF)2ICl2. Physical Review B, 2017, 96, .	3.2	3
38	Optical Conductivity Spectra of Charge-Crystal and Charge-Glass States in a Series of \hat{l}_s -Type BEDT-TTF Compounds. Crystals, 2022, 12, 831.	2.2	2
39	Disorder and flux pinning in superconducting pnictide single crystals. Physica C: Superconductivity and Its Applications, 2010, 470, S385-S386.	1.2	1
40	Orientation of Conductive Polymer PEDOT:PSS Films Prepared Under Magnetic Field., 2014, , .		1
41	Magnetic Torque due to Anisotropic Diamagnetism in Neutral BEDT-TTF Crystals. Journal of the Physical Society of Japan, 2021, 90, .	1.6	1
42	Comparison of the charge-crystal and charge-glass state in geometrically frustrated organic conductors studied by fluctuation spectroscopy. Physical Review B, 2022, 105, .	3.2	1
43	Full-gap superconductivity with strong electron correlations in the -pyrochlore KOs2O6. Physica B: Condensed Matter, 2008, 403, 1068-1070.	2.7	0
44	Fully gapped superconductivity and strong electron correlations in the -pyrochlore. Journal of Physics and Chemistry of Solids, 2008, 69, 3228-3231.	4.0	0
45	Lower critical fields and the anisotropy in PrFeAsO1â° single crystals. Physica C: Superconductivity and Its Applications, 2010, 470, S485-S486.	1.2	0
46	Microwave quasiparticle conductivity of LaFePO single crystals. Physica C: Superconductivity and Its Applications, 2010, 470, S433-S434.	1.2	0
47	Iron-Based Superconductors. Springer Theses, 2013, , 19-44.	0.1	0
48	Optical Response of a Glassy Electronic State in \hat{l}_{s} -(BEDT-TTF) < sub>2 < /sub> CsZn(SCN) < sub>4 < /sub>., 2014, , .		0
49	Superconducting Gap Structure and Quantum Critical Point in $\$ mathrm{{BaFe}}_2(mathrm{{As}}_{1-x}mathrm{{P}}_x)_2\$\$ BaFe 2 (As 1 â^ x P x) 2. Springer Theses, 2013, , 63-93.	0.1	0
50	Nodeless Versus Nodal Order Parameters in LiFeAs and LiFeP. Springer Theses, 2013, , 109-122.	0.1	0
51	Superconducting Gap Nodes in the Zone- Centered Hole Bands of \$\$ext{ KFe}_2ext{ As}_2\$\$ KFe 2 As 2. Springer Theses, 2013, , 95-107.	0.1	0