Scott Ness

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/940740/publications.pdf

Version: 2024-02-01

136950 128289 3,785 61 32 60 citations h-index g-index papers 66 66 66 3452 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Comprehensive Analysis of Co-Mutations Identifies Cooperating Mechanisms of Tumorigenesis. Cancers, 2022, 14, 415.	3.7	8
2	Cancer-specific expression quantitative loci are affected by expression dysregulation. Briefings in Bioinformatics, 2020, 21, 338-347.	6.5	4
3	MutEx: a multifaceted gateway for exploring integrative pan-cancer genomic data. Briefings in Bioinformatics, 2020, 21, 1479-1486.	6.5	12
4	Advancing Pan-cancer Gene Expression Survial Analysis by Inclusion of Non-coding RNA. RNA Biology, 2020, 17, 1666-1673.	3.1	26
5	N-Terminal Truncated Myb with New Transcriptional Activity Produced Through Use of an Alternative MYB Promoter in Salivary Gland Adenoid Cystic Carcinoma. Cancers, 2020, 12, 45.	3.7	15
6	Oncogenic Orphan Nuclear Receptor NR4A3 Interacts and Cooperates with MYB in Acinic Cell Carcinoma. Cancers, 2020, 12, 2433.	3.7	13
7	Global Autozygosity Is Associated with Cancer Risk, Mutational Signature and Prognosis. Cancers, 2020, 12, 3646.	3.7	1
8	Non-canonical RNA-DNA differences and other human genomic features are enriched within very short tandem repeats. PLoS Computational Biology, 2020, 16, e1007968.	3.2	4
9	AnnoGen: annotating genome-wide pragmatic features. Bioinformatics, 2020, 36, 2899-2901.	4.1	4
10	Epigenetic silencing of <i><scp>SOCS</scp>5</i> potentiates <scp>JAK</scp> â€ <scp>STAT</scp> signaling and progression of Tâ€cell acute lymphoblastic leukemia. Cancer Science, 2019, 110, 1931-1946.	3.9	24
11	Tumor Heterogeneity as a Predictor of Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer. Clinical Colorectal Cancer, 2019, 18, 102-109.	2.3	25
12	Genomic Positional Dissection of RNA Editomes in Tumor and Normal Samples. Frontiers in Genetics, 2019, 10, 211.	2.3	19
13	Single-nucleotide variants in human RNA: RNA editing and beyond. Briefings in Functional Genomics, 2019, 18, 30-39.	2.7	17
14	Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes. Oncotarget, 2018, 9, 7341-7358.	1.8	38
15	Mutant-Allele Tumor Heterogeneity Scores Correlate With Risk of Metastases in ColonÂCancer. Clinical Colorectal Cancer, 2017, 16, e165-e170.	2.3	39
16	Editorial: Targeting MYB Oncogene Expression in Adenoid Cystic Carcinoma. Journal of the National Cancer Institute, $2017,109,$.	6.3	2
17	Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast. BMC Genomics, 2017, 18, 107.	2.8	34
18	Integration of ruxolitinib into doseâ€intensified therapy targeted against a novel <i>JAK2</i> F694L mutation in Bâ€precursor acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2017, 64, e26328.	1.5	29

#	Article	IF	CITATIONS
19	Optimized approach for Ion Proton RNA sequencing reveals details of RNA splicing and editing features of the transcriptome. PLoS ONE, 2017, 12, e0176675.	2.5	17
20	Recurrent Fusions in <i>MYB</i> and <i>MYBL1</i> Define a Common, Transcription Factor–Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma. Cancer Discovery, 2016, 6, 176-187.	9.4	179
21	MLL rearrangements impact outcome in HOXA-deregulated T-lineage acute lymphoblastic leukemia: a Children's Oncology Group Study. Leukemia, 2016, 30, 1909-1912.	7.2	34
22	Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis. Cancers, 2014, 6, 2049-2071.	3.7	62
23	RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Molecular Genetics and Genomics, 2013, 288, 445-457.	2.1	23
24	Adult human CD133/1+ kidney cells isolated from papilla integrate into developing kidney tubules. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1344-1357.	3.8	64
25	Myb proteins: angels and demons in normal and transformed cells. Frontiers in Bioscience - Landmark, 2011, 16, 1109.	3.0	70
26	Dramatic Repositioning of c-Myb to Different Promoters during the Cell Cycle Observed by Combining Cell Sorting with Chromatin Immunoprecipitation. PLoS ONE, 2011, 6, e17362.	2.5	25
27	GSI-I (Z-LLNle-CHO) inhibits \hat{I}^3 -secretase and the proteosome to trigger cell death in precursor-B acute lymphoblastic leukemia. Leukemia, 2011, 25, 1135-1146.	7.2	30
28	Identification and Regulation of c-Myb Target Genes in MCF-7 Cells. BMC Cancer, 2011, 11, 30.	2.6	74
29	Single Molecule Analysis of c-myb Alternative Splicing Reveals Novel Classifiers for Precursor B-ALL. PLoS ONE, 2011, 6, e22880.	2.5	15
30	The SRD5A2 V89L polymorphism is associated with severity of disease in men with early onset prostate cancer. Prostate, 2008, 68, 1798-1805.	2.3	12
31	Expression levels of the human DNA repair protein metnase influence lentiviral genomic integration. Biochimie, 2008, 90, 1422-1426.	2.6	19
32	Alternative RNA Splicing Produces Multiple Forms of c-Myb with Unique Transcriptional Activities. Molecular and Cellular Biology, 2008, 28, 2091-2101.	2.3	53
33	Mip/LIN-9 Regulates the Expression of B-Myb and the Induction of Cyclin A, Cyclin B, and CDK1. Journal of Biological Chemistry, 2007, 282, 168-175.	3.4	49
34	Microarray analysis: basic strategies for successful experiments. Molecular Biotechnology, 2007, 36, 205-219.	2.4	31
35	Oncogenic mutations cause dramatic, qualitative changes in the transcriptional activity of c-Myb. Oncogene, 2006, 25, 795-805.	5.9	39
36	Hemodialysis Modulates Gene Expression Profile in Skeletal Muscle. American Journal of Kidney Diseases, 2006, 48, 616-628.	1.9	21

#	Article	IF	CITATIONS
37	Identification of a novel human tissue factor splice variant that is upregulated in tumor cells. International Journal of Cancer, 2006, 118, 1713-1720.	5.1	44
38	Positive and negative regulation of c-Myb by cyclin D1, cyclin-dependent kinases, and p27 Kip1. Blood, 2005, 105, 3855-3861.	1.4	36
39	A Polycystin-1 Multiprotein Complex Is Disrupted in Polycystic Kidney Disease Cells. Molecular Biology of the Cell, 2004, 15, 1334-1346.	2.1	132
40	Positive and Negative Determinants of Target Gene Specificity in Myb Transcription Factors. Journal of Biological Chemistry, 2004, 279, 29519-29527.	3.4	54
41	Distinct changes in gene expression induced by A-Myb, B-Myb and c-Myb proteins. Oncogene, 2003, 22, 308-313.	5.9	89
42	Myb protein specificity: evidence of a context-specific transcription factor code. Blood Cells, Molecules, and Diseases, 2003, 31, 192-200.	1.4	58
43	Pim-1 Phosphorylates the DNA Binding Domain of c-Myb. Cell Cycle, 2003, 2, 257-261.	2.6	49
44	The Conserved DNA Binding Domain Mediates Similar Regulatory Interactions for A-Myb, B-Myb, and c-Myb Transcription Factors. Blood Cells, Molecules, and Diseases, 2001, 27, 459-463.	1.4	22
45	The MHC Class II-Associated Chicken Invariant Chain Shares Functional Properties with Its Mammalian Homologs. Experimental Cell Research, 2000, 259, 360-369.	2.6	19
46	Myb binding proteins: regulators and cohorts in transformation. Oncogene, 1999, 18, 3039-3046.	5.9	90
47	Point Mutations in v-Myb Disrupt a Cyclophilin-Catalyzed Negative Regulatory Mechanism. Molecular Cell, 1998, 1, 203-211.	9.7	142
48	Pim-1 Kinase and p100 Cooperate to Enhance c-Myb Activity. Molecular Cell, 1998, 2, 417-425.	9.7	233
49	Tumor Necrosis Factor Alpha Gene Regulation: Enhancement of C/EBPβ-Induced Activation by c-Jun. Molecular and Cellular Biology, 1998, 18, 2815-2824.	2.3	106
50	The Myb oncoprotein: regulating a regulator. Biochimica Et Biophysica Acta: Reviews on Cancer, 1996, 1288, F123-F139.	7.4	63
51	The EVES motif mediates both intermolecular and intramolecular regulation of c-Myb Genes and Development, 1996, 10, 1858-1869.	5.9	157
52	Gene Regulation by NF-M and Myb during Differentiation and Leukemic Transformation. Immunobiology, 1995, 193, 356-362.	1.9	4
53	Vintage reds and whites: combinatorial transcription factor utilization in hematopoietic differentiation. Current Opinion in Genetics and Development, 1994, 4, 718-724.	3.3	56
54	C/EBP beta regulation of the tumor necrosis factor alpha gene Journal of Clinical Investigation, 1994, 94, 1449-1455.	8.2	163

SCOTT NESS

#	Article	IF	CITATION
55	Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types Genes and Development, 1993, 7, 749-759.	5.9	274
56	Proposed structure for the DNA-binding domain of the Myb oncoprotein based on model building and mutational analysis. Protein Engineering, Design and Selection, 1991, 4, 891-901.	2.1	93
57	Mutations in v-myb alter the differentiation of myelomonocytic cells transformed by the oncogene. Cell, 1990, 63, 1287-1297.	28.9	159
58	Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector. Journal of Virology, 1990, 64, 5891-5902.	3.4	36
59	The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell, 1989, 59, 1115-1125.	28.9	492
60	Carboxyl-terminal sequences influence the import of mitochondrial protein precursors in vivo Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 6692-6696.	7.1	10
61	v-myb dominance over v-myc in doubly transformed chick myelomonocytic cells. Cell, 1987, 51, 41-50.	28.9	72