David Basile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9407091/publications.pdf Version: 2024-02-01

DAVID RASHE

#	Article	IF	CITATIONS
1	Macrophage dynamics in kidney repair: elucidation of a COX-2–dependent MafB pathway to affect macrophage differentiation. Kidney International, 2022, 101, 15-18.	5.2	4
2	A Therapeutic Extracorporeal Device for Specific Removal of Pathologic Asymmetric Dimethylarginine from the Blood. Blood Purification, 2022, 51, 889-898.	1.8	3
3	Crystals or His(stones): Rethinking AKI in Tumor Lysis Syndrome. Journal of the American Society of Nephrology: JASN, 2022, 33, 1055-1057.	6.1	1
4	Specific Lowering of Asymmetric Dimethylarginine by Pharmacological Dimethylarginine Dimethylaminohydrolase Improves Endothelial Function, Reduces Blood Pressure and Ischemia-Reperfusion Injury. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 181-189.	2.5	13
5	T helper 17 cells in the pathophysiology of acute and chronic kidney disease. Kidney Research and Clinical Practice, 2021, 40, 12-28.	2.2	12
6	Mutation of RORγT reveals a role for Th17 cells in both injury and recovery from renal ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2020, 319, F796-F808.	2.7	12
7	Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Seminars in Nephrology, 2019, 39, 567-580.	1.6	47
8	Calcium channel Orai1 promotes lymphocyte IL-17 expression and progressive kidney injury. Journal of Clinical Investigation, 2019, 129, 4951-4961.	8.2	40
9	Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection. Journal of the American Society of Nephrology: JASN, 2018, 29, 1154-1164.	6.1	29
10	Unique Gene Expression in Developing Ascending Vasa Recta: A Tale of Tie. Journal of the American Society of Nephrology: JASN, 2018, 29, 1073-1074.	6.1	1
11	Endothelial colonyâ€forming cells and proâ€angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiologica, 2018, 222, e12914.	3.8	29
12	Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. Journal of the American Society of Nephrology: JASN, 2017, 28, 2081-2092.	6.1	31
13	Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury. Journal of Cellular and Molecular Medicine, 2017, 21, 1420-1430.	3.6	19
14	Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2017, 312, F897-F907.	2.7	42
15	Surprising Enhancement of Fibrosis by Tubule-Specific Deletion of the TGF-Î ² Receptor: A New Twist on an Old Paradigm. Journal of the American Society of Nephrology: JASN, 2017, 28, 3427-3429.	6.1	4
16	Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury. Physiological Reports, 2016, 4, e12829.	1.7	39
17	Progression after AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 687-697.	6.1	351
18	Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney International, 2015, 88, 776-784.	5.2	84

DAVID BASILE

#	Article	IF	CITATIONS
19	Renal Endothelial Dysfunction in Acute Kidney Ischemia Reperfusion Injury. Cardiovascular & Hematological Disorders Drug Targets, 2014, 14, 3-14.	0.7	112
20	Circulating and tissue resident endothelial progenitor cells. Journal of Cellular Physiology, 2013, 229, n/a-n/a.	4.1	173
21	Flipped classroom model improves graduate student performance in cardiovascular, respiratory, and renal physiology. American Journal of Physiology - Advances in Physiology Education, 2013, 37, 316-320.	1.6	367
22	Getting the "Inside―Scoop on EphrinB2 Signaling in Pericytes and the Effect on Peritubular Capillary Stability. Journal of the American Society of Nephrology: JASN, 2013, 24, 521-523.	6.1	4
23	AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1606-1608.	4.5	53
24	Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats. Kidney International, 2013, 83, 242-250.	5.2	21
25	Distinct effects on long-term function of injured and contralateral kidneys following unilateral renal ischemia-reperfusion. American Journal of Physiology - Renal Physiology, 2012, 302, F625-F635.	2.7	41
26	Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity. American Journal of Physiology - Renal Physiology, 2012, 302, F1494-F1502.	2.7	67
27	Activated Pericytes and the Inhibition of Renal Vascular Stability: Obstacles for Kidney Repair. Journal of the American Society of Nephrology: JASN, 2012, 23, 767-769.	6.1	6
28	Low Proliferative Potential and Impaired Angiogenesis of Cultured Rat Kidney Endothelial Cells. Microcirculation, 2012, 19, 598-609.	1.8	18
29	Pathophysiology of Acute Kidney Injury. , 2012, 2, 1303-1353.		801
30	Vasodilatation in the rat dorsal hindpaw induced by activation of sensory neurons is reduced by paclitaxel. NeuroToxicology, 2011, 32, 140-149.	3.0	21
31	Sodium Reabsorption in the Thick Ascending Limb in Relation to Blood Pressure. Hypertension, 2011, 57, 873-879.	2.7	23
32	A GAP in our knowledge of vascular signaling in acute kidney injury. Kidney International, 2011, 80, 233-235.	5.2	0
33	Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. American Journal of Physiology - Renal Physiology, 2011, 300, F721-F733.	2.7	249
34	Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. American Journal of Physiology - Renal Physiology, 2008, 294, F928-F936.	2.7	154
35	Challenges of targeting vascular stability in acute kidney injury. Kidney International, 2008, 74, 257-258.	5.2	7
36	Novel Approaches in the Investigation of Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2007, 18, 7-9.	6.1	6

DAVID BASILE

#	Article	IF	CITATIONS
37	The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney International, 2007, 72, 151-156.	5.2	395
38	Angiostatin Does Not Contribute to Skeletal Muscle Microvascular Rarefaction with Low Nitric Oxide Bioavailability. Microcirculation, 2007, 14, 145-153.	1.8	8
39	Involvement of the ubiquitin pathway in decreasing Ku70 levels in response to drug-induced apoptosis. Experimental Cell Research, 2006, 312, 488-499.	2.6	31
40	Transcriptome analysis and kidney research: Toward systems biology. Kidney International, 2005, 67, 2114-2122.	5.2	25
41	Enhanced skeletal muscle arteriolar reactivity to ANG II after recovery from ischemic acute renal failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1770-R1776.	1.8	15
42	Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. American Journal of Physiology - Renal Physiology, 2005, 288, F953-F963.	2.7	86
43	Resistance to ischemic acute renal failure in the Brown Norway rat: A new model to study cytoprotection. Kidney International, 2004, 65, 2201-2211.	5.2	47
44	Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Current Opinion in Nephrology and Hypertension, 2004, 13, 1-7.	2.0	202
45	Molecular Mechanism for the Downregularion of KU70 in Apoptotic Cells Blood, 2004, 104, 1274-1274.	1.4	0
46	Transforming growth factor-β as a target for treatment in diabetic nephropathy. American Journal of Kidney Diseases, 2001, 38, 887-890.	1.9	16
47	Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American Journal of Physiology - Renal Physiology, 2001, 281, F887-F899.	2.7	340
48	Is angiotensin II's role in fibrosis as easy as PAI(-1)?. Kidney International, 2000, 58, 460-461.	5.2	4
49	Toward an effective gene therapy in renal disease. Kidney International, 1999, 55, 740-741.	5.2	1
50	The transforming growth factor beta system in kidney disease and repair: recent progress and future directions. Current Opinion in Nephrology and Hypertension, 1999, 8, 21-30.	2.0	106
51	TGF-β in Renal Development and Renal Growth. Mineral and Electrolyte Metabolism, 1998, 24, 144-148.	1.1	15
52	Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-β in repair. American Journal of Physiology - Renal Physiology, 1998, 275, F894-F903.	2.7	47
53	Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. American Journal of Physiology - Renal Physiology, 1997, 272, F640-F647.	2.7	45
54	Increased transforming growth factor-beta 1 expression in regenerating rat renal tubules following ischemic injury. American Journal of Physiology - Renal Physiology, 1996, 270, F500-F509.	2.7	57

DAVID BASILE

#	Article	IF	CITATIONS
55	Basic fibroblast growth factor receptor in the rat adrenal cortex: effects of suramin and unilateral adrenalectomy on receptor numbers Endocrinology, 1994, 134, 2482-2489.	2.8	26
56	Basic fibroblast growth factor receptor in the rat adrenal cortex: effects of suramin and unilateral adrenalectomy on receptor numbers. Endocrinology, 1994, 134, 2482-2489.	2.8	11
57	Basic fibroblast growth factor may mediate proliferation in the compensatory adrenal growth response. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1993, 265, R1253-R1261.	1.8	20