Holger M Reichardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9406008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of testicular macrophage subpopulations in mice. Immunology Letters, 2022, 243, 44-52.	2.5	3
2	A Coculture Model Mimicking the Tumor Microenvironment Unveils Mutual Interactions between Immune Cell Subtypes and the Human Seminoma Cell Line TCam-2. Cells, 2022, 11, 885.	4.1	9
3	The Glucocorticoid Receptor in Intestinal Epithelial Cells Alleviates Colitis and Associated Colorectal Cancer in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1505-1518.	4.5	23
4	A flow cytometric approach to study glucocorticoid receptor expression in immune cell subpopulations of genetically engineered mice. Immunology Letters, 2021, 233, 68-79.	2.5	4
5	Protection of Antigen-Primed Effector T Cells From Glucocorticoid-Induced Apoptosis in Cell Culture and in a Mouse Model of Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 671258.	4.8	4
6	The Role of Glucocorticoids in Inflammatory Diseases. Cells, 2021, 10, 2921.	4.1	44
7	Glucocorticoids delivered by inorganic–organic hybrid nanoparticles mitigate acute graftâ€versusâ€host disease and sustain graftâ€versusâ€leukemia activity. European Journal of Immunology, 2020, 50, 1220-1233.	2.9	4
8	Highly selective organ distribution and cellular uptake of inorganic-organic hybrid nanoparticles customized for the targeted delivery of glucocorticoids. Journal of Controlled Release, 2020, 319, 360-370.	9.9	8
9	C-type lectin receptors Mcl and Mincle control development of multiple sclerosis–like neuroinflammation. Journal of Clinical Investigation, 2020, 130, 838-852.	8.2	27
10	Glucocorticoid resistance of allogeneic T cells alters the gene expression profile in the inflamed small intestine of mice suffering from acute graft-versus-host disease. Journal of Steroid Biochemistry and Molecular Biology, 2019, 195, 105485.	2.5	7
11	Glucocorticoid Therapy of Multiple Sclerosis Patients Induces Anti-inflammatory Polarization and Increased Chemotaxis of Monocytes. Frontiers in Immunology, 2019, 10, 1200.	4.8	44
12	Glucocorticoid Receptor-Deficient Foxp3+ Regulatory T Cells Fail to Control Experimental Inflammatory Bowel Disease. Frontiers in Immunology, 2019, 10, 472.	4.8	28
13	β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature, 2019, 566, 503-508.	27.8	109
14	Regeneration competent satellite cell niches in rat engineered skeletal muscle. FASEB BioAdvances, 2019, 1, 731-746.	2.4	21
15	Progesterone modulates the Tâ€cell response via glucocorticoid receptorâ€dependent pathways. American Journal of Reproductive Immunology, 2019, 81, e13084.	1.2	40
16	Fluorescent Inorganicâ€Organic Hybrid Nanoparticles. ChemNanoMat, 2019, 5, 24-45.	2.8	20
17	An alternative for extracorporeal photopheresis: 8â€methoxypsoralen and UVAâ€treated leucocytes from allogeneic donors improve graftâ€versusâ€host disease in mice. Vox Sanguinis, 2018, 113, 803-810. 	1.5	3
18	Impaired resolution of DSS-induced colitis in mice lacking the glucocorticoid receptor in myeloid cells. PLoS ONE, 2018, 13, e0190846.	2.5	40

#	Article	IF	CITATIONS
19	Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. Journal of Clinical Investigation, 2018, 128, 3265-3279.	8.2	52
20	The glucocorticoid receptor in recipient cells keeps cytokine secretion in acute graft-versus-host disease at bay. Oncotarget, 2018, 9, 15437-15450.	1.8	14
21	Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proceedings of the United States of America, 2017, 114, E181-E190.	7.1	86
22	The Insulin Receptor Plays a Critical Role in T Cell Function and Adaptive Immunity. Journal of Immunology, 2017, 198, 1910-1920.	0.8	89
23	Prediction of graft-versus-host disease: a biomarker panel based on lymphocytes and cytokines. Annals of Hematology, 2017, 96, 1127-1133.	1.8	25
24	Airway Epithelial Cells Are Crucial Targets of Glucocorticoids in a Mouse Model of Allergic Asthma. Journal of Immunology, 2017, 199, 48-61.	0.8	44
25	Targeted delivery of glucocorticoids to macrophages in a mouse model of multiple sclerosis using inorganic-organic hybrid nanoparticles. Journal of Controlled Release, 2017, 245, 157-169.	9.9	49
26	Deletion of the Mineralocorticoid Receptor in Myeloid Cells Attenuates Central Nervous System Autoimmunity. Frontiers in Immunology, 2017, 8, 1319.	4.8	26
27	Novel Drug Delivery Systems Tailored for Improved Administration of Glucocorticoids. International Journal of Molecular Sciences, 2017, 18, 1836.	4.1	53
28	T-cell autonomous death induced by regeneration of inert glucocorticoid metabolites. Cell Death and Disease, 2017, 8, e2948-e2948.	6.3	17
29	Distinct roles of Tâ€cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity. FASEB Journal, 2016, 30, 1724-1732.	0.5	10
30	Modulation of CNS autoimmune responses by CD8+ T cells coincides with their oligoclonal expansion. Journal of Neuroimmunology, 2016, 290, 26-32.	2.3	5
31	T cell abundance in blood predicts acute organ toxicity in chemoradiotherapy for head and neck cancer. Oncotarget, 2016, 7, 65902-65915.	1.8	3
32	Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia, 2015, 63, 1083-1099.	4.9	29
33	Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature, 2015, 521, E1-E4.	27.8	159
34	Multifunctional Phosphate-Based Inorganic–Organic Hybrid Nanoparticles. Journal of the American Chemical Society, 2015, 137, 7329-7336.	13.7	71
35	Thymocyteâ€derived BDNF influences Tâ€cell maturation at the DN3/DN4 transition stage. European Journal of Immunology, 2015, 45, 1326-1338.	2.9	18
36	Glucocorticoids attenuate acute graft-versus-host disease by suppressing the cytotoxic capacity of CD8 ⁺ T cells. Journal of Pathology, 2015, 235, 646-655.	4.5	33

#	Article	IF	CITATIONS
37	High-grade acute organ toxicity and p16INK4A expression as positive prognostic factors in primary radio(chemo)therapy for patients with head and neck squamous cell carcinoma. Strahlentherapie Und Onkologie, 2015, 191, 566-572.	2.0	20
38	Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nature Communications, 2015, 6, 7796.	12.8	131
39	Inducible Knock-Down of the Mineralocorticoid Receptor in Mice Disturbs Regulation of the Renin-Angiotensin-Aldosterone System and Attenuates Heart Failure Induced by Pressure Overload. PLoS ONE, 2015, 10, e0143954.	2.5	12
40	Modified Extracorporeal Photopheresis with Cells from a Healthy Donor for Acute Graft-versus-Host Disease in a Mouse Model. PLoS ONE, 2014, 9, e105896.	2.5	19
41	Glucocorticoids Induce Gastroparesis in Mice Through Depletion of l-Arginine. Endocrinology, 2014, 155, 3899-3908.	2.8	20
42	Generation of Transgenic Rats Using Lentiviral Vectors. Methods in Molecular Biology, 2014, 1304, 25-37.	0.9	2
43	Chemokine-mediated redirection of T cells constitutes a critical mechanism of glucocorticoid therapy in autoimmune CNS responses. Acta Neuropathologica, 2014, 127, 713-729.	7.7	46
44	Critical role of thymocyte-derived brain-derived neurotrophic factor in T cell maturation. Journal of Neuroimmunology, 2014, 275, 202-203.	2.3	0
45	Novel mechanisms of glucocorticoids in the treatment of multiple sclerosis. Journal of Neuroimmunology, 2014, 275, 60.	2.3	0
46	Erythropoietin Responsive Cardiomyogenic Cells Contribute to Heart Repair Post Myocardial Infarction. Stem Cells, 2014, 32, 2480-2491.	3.2	22
47	Depletion of Cutaneous Macrophages and Dendritic Cells Promotes Growth of Basal Cell Carcinoma in Mice. PLoS ONE, 2014, 9, e93555.	2.5	29
48	The potential role of T cell migration and chemotaxis as targets of glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis. Molecular and Cellular Endocrinology, 2013, 380, 99-107.	3.2	25
49	A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nature Medicine, 2013, 19, 784-790.	30.7	107
50	CD8+ T cell help is required for efficient induction of EAE in Lewis rats. Journal of Neuroimmunology, 2013, 260, 17-27.	2.3	20
51	Glucocorticoids Induce Effector T Cell Depolarization via ERM Proteins, Thereby Impeding Migration and APC Conjugation. Journal of Immunology, 2013, 190, 4360-4370.	0.8	26
52	The Hedgehog Receptor Patched1 in T Cells Is Dispensable for Adaptive Immunity in Mice. PLoS ONE, 2013, 8, e61034.	2.5	19
53	Glucocorticoid-Induced Apoptosis in Animal Models of Multiple Sclerosis. Critical Reviews in Immunology, 2013, 33, 183-202.	0.5	9
54	A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1210-E1220.	3.5	83

#	Article	IF	CITATIONS
55	Preventive Treatment with Methylprednisolone Paradoxically Exacerbates Experimental Autoimmune Encephalomyelitis. International Journal of Endocrinology, 2012, 2012, 1-8.	1.5	9
56	Glucocorticoids Enhance Intestinal Glucose Uptake Via the Dimerized Glucocorticoid Receptor in Enterocytes. Endocrinology, 2012, 153, 1783-1794.	2.8	33
5 7	Glucocorticoid receptor dimerization is required for survival in septic shock <i>via</i> suppression of interleukinâ€1 in macrophages. FASEB Journal, 2012, 26, 722-729.	0.5	135
58	The Ambivalent Role of Apoptosis in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Current Pharmaceutical Design, 2012, 18, 4453-4464.	1.9	14
59	Healthy Bone Marrow Cells Reduce Progression of Kidney Failure Better than CKD Bone Marrow Cells in Rats with Established Chronic Kidney Disease. Cell Transplantation, 2012, 21, 2299-2312.	2.5	48
60	Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice. Blood, 2012, 119, 6032-6042.	1.4	52
61	Acid Sphingomyelinase Is Required for Protection of Effector Memory T Cells against Glucocorticoid-Induced Cell Death. Journal of Immunology, 2011, 187, 4509-4516.	0.8	30
62	Liposomal Encapsulation of Glucocorticoids Alters Their Mode of Action in the Treatment of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2011, 187, 4310-4318.	0.8	65
63	Therapeutic Efficacy of Intranasally Delivered Mesenchymal Stem Cells in a Rat Model of Parkinson Disease. Rejuvenation Research, 2011, 14, 3-16.	1.8	225
64	Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19317-19322.	7.1	91
65	Response to Comment on "Type 1 Diabetes in BioBreeding Rats Is Critically Linked to an Imbalance between Th17 and Regulatory T Cells and an Altered TCR Repertoire― Journal of Immunology, 2011, 186, 1298-1299.	0.8	1
66	T Cell Development Critically Depends on Prethymic Stromal Patched Expression. Journal of Immunology, 2011, 186, 3383-3391.	0.8	15
67	Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells In Vivo. PLoS ONE, 2011, 6, e24345.	2.5	46
68	Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor. BMC Genomics, 2010, 11, 359.	2.8	107
69	Type 1 Diabetes in BioBreeding Rats Is Critically Linked to an Imbalance between Th17 and Regulatory T Cells and an Altered TCR Repertoire. Journal of Immunology, 2010, 185, 2285-2294.	0.8	47
70	Glucocorticoids Suppress Bone Formation by Attenuating Osteoblast Differentiation via the Monomeric Glucocorticoid Receptor. Cell Metabolism, 2010, 11, 517-531.	16.2	346
71	Therapeutic and Adverse Effects of a Non-Steroidal Glucocorticoid Receptor Ligand in a Mouse Model of Multiple Sclerosis. PLoS ONE, 2009, 4, e8202.	2.5	62
72	Traditional Concepts and Future Avenues of Glucocorticoid Action in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis Therapy. Critical Reviews in Immunology, 2009, 29, 255-273.	0.5	29

#	Article	IF	CITATIONS
73	Stable silencing of the glucocorticoid receptor in myelinâ€specific T effector cells by retroviral delivery of shRNA: Insight into neuroinflammatory disease. European Journal of Immunology, 2009, 39, 2361-2370.	2.9	6
74	Spondylarthritis in HLA–B27/human β ₂ â€microglobulin–transgenic rats is not prevented by lack of CD8. Arthritis and Rheumatism, 2009, 60, 1977-1984.	6.7	123
75	ORIGINAL ARTICLE: Impact of Female Sex Hormones on the Maturation and Function of Human Dendritic Cells. American Journal of Reproductive Immunology, 2009, 62, 165-173.	1.2	77
76	The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation. Reproductive Biology and Endocrinology, 2008, 6, 17.	3.3	48
77	Peripheral T Cells Are the Therapeutic Targets of Glucocorticoids in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 180, 8434-8443.	0.8	161
78	Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18507-18512.	7.1	149
79	Cell-specific Regulation of PTX3 by Glucocorticoid Hormones in Hematopoietic and Nonhematopoietic Cells. Journal of Biological Chemistry, 2008, 283, 29983-29992.	3.4	78
80	The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E785-E797.	3.5	278
81	Silencing of the Mineralocorticoid Receptor by Ribonucleic Acid Interference in Transgenic Rats Disrupts Endocrine Homeostasis. Molecular Endocrinology, 2008, 22, 1304-1311.	3.7	13
82	Intestinal Smooth Muscle Cell Maintenance by Basic Fibroblast Growth Factor. Tissue Engineering - Part A, 2008, 14, 1395-1402.	3.1	45
83	A CD28 superagonistic antibody elicits 2 functionally distinct waves of T cell activation in rats. Journal of Clinical Investigation, 2008, 118, 1405-1416.	8.2	41
84	Glucocorticoids in the control of neuroinflammation. Molecular and Cellular Endocrinology, 2007, 275, 62-70.	3.2	80
85	Enhanced Glucocorticoid Receptor Signaling in T Cells Impacts Thymocyte Apoptosis and Adaptive Immune Responses. American Journal of Pathology, 2007, 170, 1041-1053.	3.8	43
86	Activation of the MAP Kinase Pathway Induces Apoptosis in the Merkel Cell Carcinoma Cell Line UISO. Journal of Investigative Dermatology, 2007, 127, 2116-2122.	0.7	27
87	Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology, 2007, 122, 47-53.	4.4	174
88	Enhanced Glucocorticoid Signaling Impacts Thymocyte Apoptosis and Adaptive Immune Responses. Clinical Immunology, 2007, 123, S143-S144.	3.2	0
89	Antigen therapy of experimental autoimmune encephalomyelitis selectively induces apoptosis of pathogenic T cells. Journal of Neuroimmunology, 2007, 183, 146-150.	2.3	10
90	Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. Journal of Clinical Investigation, 2007, 117, 1381-1390.	8.2	225

#	Article	IF	CITATIONS
91	Glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis. Expert Review of Neurotherapeutics, 2006, 6, 1657-1670.	2.8	43
92	Unexpected features of acute T lymphoblastic lymphomas in Notch1IC transgenic rats. European Journal of Immunology, 2006, 36, 2223-2234.	2.9	7
93	Polyclonal expansion of regulatory T cells interferes with effector cell migration in a model of multiple sclerosis. Brain, 2006, 129, 2635-2647.	7.6	75
94	Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 195-200.	7.1	240
95	Glucocorticoids Engage Different Signal Transduction Pathways to Induce Apoptosis in Thymocytes and Mature T Cells. Journal of Immunology, 2006, 176, 1695-1702.	0.8	96
96	Tolerance induction by bone marrow transplantation in a multiple sclerosis model. Blood, 2005, 106, 1875-1883.	1.4	62
97	Sustained Pre-TCR Expression in Notch1IC-Transgenic Rats Impairs T Cell Maturation and Selection. Journal of Immunology, 2005, 174, 7845-7852.	0.8	13
98	MOLECULAR MECHANISMS OF GLUCOCORTICOIDS IN THE CONTROL OF INFLAMMATION AND LYMPHOCYTE APOPTOSIS. Critical Reviews in Clinical Laboratory Sciences, 2005, 42, 71-104.	6.1	164
99	Resistance of Single-Positive Thymocytes to Glucocorticoid-Induced Apoptosis Is Mediated by CD28 Signaling. Molecular Endocrinology, 2004, 18, 687-695.	3.7	22
100	Glucocorticoid receptor function in hepatocytes is essential to promote postnatal body growth. Genes and Development, 2004, 18, 492-497.	5.9	110
101	Inhibition of Notch signaling biases rat thymocyte development towards the NK cell lineage. European Journal of Immunology, 2004, 34, 1405-1413.	2.9	35
102	Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis, 2004, 39, 94-99.	1.6	73
103	A role for endogenous glucocorticoids in wound repair. EMBO Reports, 2002, 3, 575-582.	4.5	57
104	Mice with targeted mutations of glucocorticoid and mineralocorticoid receptors: Models for depression and anxiety?. Physiology and Behavior, 2001, 73, 811-825.	2.1	101
105	Mice with an Increased Glucocorticoid Receptor Gene Dosage Show Enhanced Resistance to Stress and Endotoxic Shock. Molecular and Cellular Biology, 2000, 20, 9009-9017.	2.3	193
106	Molecular Genetic Analysis of Glucocorticoid Signaling Using the Cre/loxP System. Biological Chemistry, 2000, 381, 961-964.	2.5	37
107	Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling. Science, 2000, 289, 2344-2347.	12.6	1,591
108	Genetic disruption of mineralocorticoid receptor leads to impaired neurogenesis and granule cell degeneration in the hippocampus of adult mice. EMBO Reports, 2000, 1, 447-451.	4.5	142

#	Article	IF	CITATIONS
109	The DNA Binding-Independent Function of the Glucocorticoid Receptor Mediates Repression of Ap-1–Dependent Genes in Skin. Journal of Cell Biology, 1999, 147, 1365-1370.	5.2	179
110	Corticotropin-releasing hormone expression is the major target for glucocorticoid feedback-control at the hypothalamic level. Brain Research, 1999, 818, 488-491.	2.2	66
111	New Insights into Glucocorticoid and Mineralocorticoid Signaling: Lessons from Gene Targeting. Advances in Pharmacology, 1999, 47, 1-21.	2.0	43
112	Glucocorticoid signalling—multiple variations of a common theme. Molecular and Cellular Endocrinology, 1998, 146, 1-6.	3.2	127
113	Genetic dissection of glucocorticoid receptor function in mice. Current Opinion in Genetics and Development, 1998, 8, 532-538.	3.3	160
114	Analysis of glucocorticoid signalling by gene targeting. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 111-115.	2.5	53
115	DNA Binding of the Glucocorticoid Receptor Is Not Essential for Survival. Cell, 1998, 93, 531-541.	28.9	1,009
116	Absence of Glucocorticoid Receptor-Î ² in Mice. Journal of Biological Chemistry, 1997, 272, 26665-26668.	3.4	93
117	Feedback Control of Glucocorticoid Production is Established during Fetal Development. Molecular Medicine, 1996, 2, 735-744.	4.4	59