List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9405962/publications.pdf Version: 2024-02-01

ΙΔΝ ΠΔΝΚΒΔΔΡ

#	Article	IF	CITATIONS
1	Cerebrospinal fluid volume improves prediction of malignant edema after endovascular treatment of stroke. International Journal of Stroke, 2023, 18, 187-192.	5.9	4
2	Radiological and surgical aspects of round window visibility during cochlear implantation: a retrospective analysis. European Archives of Oto-Rhino-Laryngology, 2022, 279, 67-74.	1.6	5
3	Malignant infarction after endovascular treatment: Incidence and prediction. International Journal of Stroke, 2022, 17, 198-206.	5.9	7
4	Masseter muscle parameters can function as an alternative for skeletal muscle mass assessments on cross-sectional imaging at lumbar or cervical vertebral levels. Quantitative Imaging in Medicine and Surgery, 2022, 12, 15-27.	2.0	8
5	Brain retraction injury after elective aneurysm clipping: a retrospective single-center cohort study. Acta Neurochirurgica, 2022, 164, 805-809.	1.7	2
6	Probability maps classify ischemic stroke regions more accurately than CT perfusion summary maps. European Radiology, 2022, 32, 6367-6375.	4.5	4
7	Labyrinthine fistulas: Surgical outcomes and an additional diagnostic strategy. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2022, 43, 103441.	1.3	3
8	Conventional MRI Criteria to Differentiate Progressive Disease from Treatment-Induced Effects in High-Grade (WHO Grade 3–4) Gliomas. Neurology, 2022, , 10.1212/WNL.0000000000200359.	1.1	3
9	Image Quality of Virtual Monochromatic Reconstructions of Noncontrast CT on a Dual-Source CT Scanner in Adult Patients. Academic Radiology, 2021, 28, e323-e330.	2.5	5
10	Virtual monochromatic dual-energy CT reconstructions improve detection of cerebral infarct in patients with suspicion of stroke. Neuroradiology, 2021, 63, 41-49.	2.2	18
11	Effect of intravenous thrombolysis in stroke depends on pattern of intracranial internal carotid artery calcification. Atherosclerosis, 2021, 316, 8-14.	0.8	8
12	Prediction of long-term recurrent ischemic stroke: the added value of non-contrast CT, CT perfusion, and CT angiography. Neuroradiology, 2021, 63, 483-490.	2.2	2
13	Improving the Quality of Cerebral Perfusion Maps With Monoenergetic Dual-Energy Computed Tomography Reconstructions. Journal of Computer Assisted Tomography, 2021, 45, 103-109.	0.9	Ο
14	Non-contrast dual-energy CT virtual ischemia maps accuratelyÂestimateÂischemic core sizeÂin large-vessel occlusiveÂstroke. Scientific Reports, 2021, 11, 6745.	3.3	10
15	Prognostic imaging variables for recurrent laryngeal and hypopharyngeal carcinoma treated with primary chemoradiotherapy: A systematic review and metaâ€analysis. Head and Neck, 2021, 43, 2202-2215.	2.0	5
16	An anomaly detection approach to identify chronic brain infarcts on MRI. Scientific Reports, 2021, 11, 7714.	3.3	33
17	Variation in arterial input function in a large multicenter computed tomography perfusion study. European Radiology, 2021, 31, 8317-8325.	4.5	9
18	Feasibility study of ultrasound-guided resection of tongue cancer with immediate specimen examination to improve margin control – Comparison with conventional treatment. Oral Oncology, 2021, 116, 105249.	1.5	24

#	Article	IF	CITATIONS
19	Perfusion imaging with arterial spin labeling (ASL)–MRI predicts malignant progression in low‑grade (WHO grade II) gliomas. Neuroradiology, 2021, 63, 2023-2033.	2.2	7
20	Single-arm, open-label, multicentre first in human study to evaluate the safety and performance of dural sealant patch in reducing CSF leakage following elective cranial surgery: the ENCASE trial. BMJ Open, 2021, 11, e049098.	1.9	4
21	Response to: Should ultrasound-guided resection be the new norm for oral tongue resections?. Oral Oncology, 2021, 124, 105473.	1.5	1
22	P14.17 Conventional MRI criteria differentiate true tumour progression from treatment-induced effects in irradiated WHO grade 3 and 4 gliomas. Neuro-Oncology, 2021, 23, ii41-ii41.	1.2	0
23	P14.23 Relation between neurological deficits and location of postsurgical ischemia in glioma resection. Neuro-Oncology, 2021, 23, ii42-ii42.	1.2	0
24	P14.30 Voxelwise analysis of spatial distribution of postoperative ischemia in diffuse glioma. Neuro-Oncology, 2021, 23, ii44-ii44.	1.2	0
25	Comparison of 2-Hydroxyglutarate Detection With sLASER and MEGA-sLASER at 7T. Frontiers in Neurology, 2021, 12, 718423.	2.4	9
26	Skeletal muscle mass at C3 is a strong predictor for skeletal muscle mass at L3 in sarcopenic and non-sarcopenic patients with head and neck cancer. Oral Oncology, 2021, 122, 105558.	1.5	5
27	Association of Ischemic Core Imaging Biomarkers With Post-Thrombectomy Clinical Outcomes in the MR CLEAN Registry. Frontiers in Neurology, 2021, 12, 771367.	2.4	6
28	Prevalence and vascular risk factors of basal ganglia calcifications in patients at risk for cerebrovascular disease. Journal of Neuroradiology, 2020, 47, 337-342.	1.1	12
29	Computed Tomography Perfusion Data for Acute Ischemic Stroke Evaluation Using Rapid Software. Journal of Computer Assisted Tomography, 2020, 44, 75-77.	0.9	20
30	Collateral Status in Ischemic Stroke: A Comparison of Computed Tomography Angiography, Computed Tomography Perfusion, and Digital Subtraction Angiography. Journal of Computer Assisted Tomography, 2020, 44, 984-992.	0.9	22
31	Detecting Bone Invasion of the Maxilla by Oral Squamous Cell Carcinoma: Diagnostic Accuracy of Preoperative Computed Tomography Versus Magnetic Resonance Imaging. Journal of Oral and Maxillofacial Surgery, 2020, 78, 1645-1652.	1.2	4
32	Early detection of small volume stroke and thromboembolic sources with computed tomography: Rationale and design of the ENCLOSE study. European Stroke Journal, 2020, 5, 432-440.	5.5	3
33	Signs of Pulmonary Infection on Admission Chest Computed Tomography Are Associated With Pneumonia or Death in Patients With Acute Stroke. Stroke, 2020, 51, 1690-1695.	2.0	22
34	Coiling of the Internal Carotid Artery is Associated with Hypertension in Patients Suspected of Stroke. Clinical Neuroradiology, 2020, 31, 425-430.	1.9	4
35	Computed Tomography Angiography. , 2020, , 45-59.		0
36	New Developments in Sentinel Lymph Node Biopsy Procedure in Localized Oral Cancer. JAMA Otolaryngology - Head and Neck Surgery, 2019, 145, 741.	2.2	3

#	Article	IF	CITATIONS
37	ldentifying perfusion deficits on CT perfusion images using temporal similarity perfusion (TSP) mapping. European Radiology, 2019, 29, 4198-4206.	4.5	0
38	Response by Kauw et al to Letter Regarding Article, "Intracranial Cerebrospinal Fluid Volume as a Predictor of Malignant Middle Cerebral Artery Infarction― Stroke, 2019, 50, e304.	2.0	14
39	Dose of CT protocols acquired in clinical routine using a dual-layer detector CT scanner: A preliminary report. European Journal of Radiology, 2019, 112, 65-71.	2.6	29
40	Stroke progression and clinical outcome in ischemic stroke patients with a history of migraine. International Journal of Stroke, 2019, 14, 946-955.	5.9	9
41	Intracranial Cerebrospinal Fluid Volume as a Predictor of Malignant Middle Cerebral Artery Infarction. Stroke, 2019, 50, 1437-1443.	2.0	24
42	Effect of prolonged acquisition intervals for CTâ€perfusion analysis methods in patients with ischemic stroke. Medical Physics, 2019, 46, 3156-3164.	3.0	12
43	Clinical value of (dedicated) 3 Tesla and 7 Tesla MRI for cT1 glottic carcinoma: A feasibility study. Laryngoscope Investigative Otolaryngology, 2019, 4, 95-101.	1.5	0
44	NCMP-15. BEVACIZUMAB FOR THE TREATMENT OF CEREBRAL RADIATION NECROSIS: A RETROSPECTIVE COHORT STUDY. Neuro-Oncology, 2019, 21, vi182-vi182.	1.2	0
45	Anatomical and Functional ComputedÂTomography for DiagnosingÂHemodynamically SignificantÂCoronaryÂArtery Disease. JACC: Cardiovascular Imaging, 2019, 12, 1316-1325.	5.3	105
46	Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques. Journal of Magnetic Resonance Imaging, 2019, 49, 11-22.	3.4	75
47	Computed Tomography Perfusion Derived Blood-Brain Barrier Permeability Does Not Yet Improve Prediction of Hemorrhagic Transformation. Cerebrovascular Diseases, 2018, 45, 26-32.	1.7	19
48	Internal Carotid Artery Stenosis and Collateral Recruitment in Stroke Patients. Clinical Neuroradiology, 2018, 28, 339-344.	1.9	18
49	Induced Hypertension for Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2018, 49, 76-83.	2.0	140
50	Easily detected signs of perineural tumour spread in head and neck cancer. Insights Into Imaging, 2018, 9, 1089-1095.	3.4	18
51	A Change of Heart: Yield of Cardiac Imaging in Acute Stroke Workup. Case Reports in Neurology, 2018, 10, 118-123.	0.7	1
52	Prediction of ultrasound guided fine needle aspiration cytology results by FDG PET-CT for lymph node metastases in head and neck squamous cell carcinoma patients. Acta Oncológica, 2018, 57, 1687-1692.	1.8	11
53	Outcome in Patients with Isolated Moderate to Severe Traumatic Brain Injury. Critical Care Research and Practice, 2018, 2018, 1-7.	1.1	27
54	Wake-Up Stroke versus Stroke with Known Onset Time: Clinical and Multimodality CT Imaging Characteristics. Cerebrovascular Diseases, 2018, 45, 236-244.	1.7	18

#	Article	IF	CITATIONS
55	Clinical and Imaging Predictors of Recurrent Ischemic Stroke: A Systematic Review and Meta-Analysis. Cerebrovascular Diseases, 2018, 45, 279-287.	1.7	51
56	lmage quality of conventional images of dual″ayerSPECTRAL CT: A phantom study. Medical Physics, 2018, 45, 3031-3042.	3.0	31
57	The interobserver agreement in the detection of recurrent HNSCC using MRI including diffusion weighted MRI. European Journal of Radiology, 2018, 105, 134-140.	2.6	0
58	Target Volume Delineation Using Diffusion-weighted Imaging for MR-guided Radiotherapy: A Case Series of Laryngeal Cancer Validated by Pathology. Cureus, 2018, 10, e2465.	0.5	6
59	Abstract WMP22: Temporal Similarity Perfusion Mapping, An Effective CTP Analysis Method Without Transit Delay Sensitivity. Stroke, 2018, 49, .	2.0	0
60	Prediction of Clinical Outcome After Acute Ischemic Stroke. Stroke, 2017, 48, 2593-2596.	2.0	6
61	Detection of cartilage invasion in laryngeal carcinoma with dynamic contrastâ€enhanced CT. Laryngoscope Investigative Otolaryngology, 2017, 2, 373-379.	1.5	11
62	Assessment of Collateral Status by Dynamic CT Angiography in Acute MCA Stroke: Timing of Acquisition and Relationship with Final Infarct Volume. American Journal of Neuroradiology, 2016, 37, 1231-1236.	2.4	40
63	Spreading depolarization-modulating drugs and delayed cerebral ischemia after subarachnoid hemorrhage: A hypothesis-generating retrospective clinical study. Journal of the Neurological Sciences, 2016, 366, 224-228.	0.6	1
64	Permeable Thrombi Are Associated With Higher Intravenous Recombinant Tissue-Type Plasminogen Activator Treatment Success in Patients With Acute Ischemic Stroke. Stroke, 2016, 47, 2058-2065.	2.0	61
65	Imaging Findings Associated with Space-Occupying Edema in Patients with Large Middle Cerebral Artery Infarcts. American Journal of Neuroradiology, 2016, 37, 831-837.	2.4	23
66	CT angiography and CT perfusion improve prediction of infarct volume in patients with anterior circulation stroke. Neuroradiology, 2016, 58, 327-337.	2.2	22
67	Relationship Between Cardiac Dysfunction and Cerebral Perfusion in Patients with Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care, 2016, 24, 202-206.	2.4	27
68	Relation between stroke severity, patient characteristics and CT-perfusion derived blood-brain barrier permeability measurements in acute ischemic stroke. Clinical Neuroradiology, 2016, 26, 415-421.	1.9	20
69	CT perfusion analysis by nonlinear regression for predicting hemorrhagic transformation in ischemic stroke. Medical Physics, 2015, 42, 4610-4618.	3.0	17
70	Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis. PLoS ONE, 2015, 10, e0137766.	2.5	10
71	Computed tomography perfusion evaluation after extracranial–intracranial bypass surgery. Clinical Neurology and Neurosurgery, 2015, 136, 139-146.	1.4	25
72	The Prognostic Value of CT Angiography and CT Perfusion in Acute Ischemic Stroke. Cerebrovascular Diseases, 2015, 40, 258-269.	1.7	60

#	Article	IF	CITATIONS
73	The use of 18F-FDG PET to differentiate progressive disease from treatment induced necrosis in high grade glioma. Journal of Neuro-Oncology, 2015, 125, 167-175.	2.9	27
74	Different CT perfusion algorithms in the detection of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology, 2015, 57, 469-474.	2.2	11
75	CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction. Neuroradiology, 2015, 57, 897-902.	2.2	18
76	Predictors of Reperfusion in Patients with Acute Ischemic Stroke. American Journal of Neuroradiology, 2015, 36, 1056-1062.	2.4	21
77	CT perfusion on admission and cognitive functioning 3Âmonths after aneurysmal subarachnoid haemorrhage. Journal of Neurology, 2015, 262, 623-628.	3.6	5
78	Additional Diagnostic Value of Computed Tomography Perfusion for Detection of Acute Ischemic Stroke in the Posterior Circulation. Stroke, 2015, 46, 1113-1115.	2.0	60
79	Timing-Invariant CT Angiography Derived from CT Perfusion Imaging in Acute Stroke: A Diagnostic Performance Study. American Journal of Neuroradiology, 2015, 36, 1834-1838.	2.4	22
80	Effects of Induced Hypertension on Cerebral Perfusion in Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2015, 46, 3277-3281.	2.0	73
81	Relation between reperfusion and hemorrhagic transformation in acute ischemic stroke. Neuroradiology, 2015, 57, 1219-1225.	2.2	12
82	Imaging findings of the orbital and intracranial complications of acute bacterial rhinosinusitis. Insights Into Imaging, 2015, 6, 509-518.	3.4	62
83	Residual High-Grade Stenosis After Recanalization of Extracranial Carotid Occlusion in Acute Ischemic Stroke. Stroke, 2015, 46, 12-15.	2.0	9
84	Effect of Extended CT Perfusion Acquisition Time on Ischemic Core and Penumbra Volume Estimation in Patients with Acute Ischemic Stroke due to a Large Vessel Occlusion. PLoS ONE, 2015, 10, e0119409.	2.5	25
85	Vocal cord paralysis: anatomy, imaging and pathology. Insights Into Imaging, 2014, 5, 743-751.	3.4	42
86	Predictive Value of Thrombus Attenuation on Thin-Slice Non-Contrast CT for Persistent Occlusion after Intravenous Thrombolysis. Cerebrovascular Diseases, 2014, 37, 116-122.	1.7	39
87	Prediction of outcome in patients with suspected acute ischaemic stroke with CT perfusion and CT angiography: the Dutch acute stroke trial (DUST) study protocol. BMC Neurology, 2014, 14, 37.	1.8	55
88	Cerebral CT Perfusion in Patients with Perimesencephalic and Those with Aneurysmal Subarachnoid Hemorrhage. International Journal of Stroke, 2014, 9, 183-187.	5.9	8
89	Comparison of Partial Volume Effects in Arterial and Venous Contrast Curves in CT Brain Perfusion Imaging. PLoS ONE, 2014, 9, e97586.	2.5	3
90	A Fast Nonlinear Regression Method for Estimating Permeability in CT Perfusion Imaging. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1743-1751.	4.3	22

#	Article	IF	CITATIONS
91	Timing-Invariant Imaging of Collateral Vessels in Acute Ischemic Stroke. Stroke, 2013, 44, 2194-2199.	2.0	93
92	Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Stroke, 2013, 44, 43-54.	2.0	156
93	CT Brain Perfusion Protocol to Eliminate the Need for Selecting a Venous Output Function. American Journal of Neuroradiology, 2013, 34, 1353-1358.	2.4	10
94	Diagnostic Accuracy of CT Perfusion Imaging for Detecting Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Cerebrovascular Diseases, 2013, 35, 493-501.	1.7	75
95	Reliability of Visual Assessment of Non-Contrast CT, CT Angiography Source Images and CT Perfusion in Patients with Suspected Ischemic Stroke. PLoS ONE, 2013, 8, e75615.	2.5	38
96	Timing-Invariant Reconstruction for Deriving High-Quality CT Angiographic Data from Cerebral CT Perfusion Data. Radiology, 2012, 263, 216-225.	7.3	64
97	Dynamic perfusion-CT assessment of early changes in blood brain barrier permeability of acute ischaemic stroke patients. Journal of Neuroradiology, 2011, 38, 161-166.	1.1	34
98	Changes in Cerebral Perfusion around the Time of Delayed Cerebral Ischemia in Subarachnoid Hemorrhage Patients. Cerebrovascular Diseases, 2011, 32, 133-140.	1.7	22
99	Delay Correction for the Assessment of Blood-Brain Barrier Permeability Using First-Pass Dynamic Perfusion CT. American Journal of Neuroradiology, 2011, 32, E134-E138.	2.4	11
100	Validation of CT brain perfusion methods using a realistic dynamic head phantom. Medical Physics, 2011, 38, 3212-3221.	3.0	37
101	Blood-Brain Barrier Permeability Assessed by Perfusion CT Predicts Symptomatic Hemorrhagic Transformation and Malignant Edema in Acute Ischemic Stroke. American Journal of Neuroradiology, 2011, 32, 41-48.	2.4	147
102	Diagnostic Threshold Values of Cerebral Perfusion Measured With Computed Tomography for Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2010, 41, 1927-1932.	2.0	90
103	Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Critical Care, 2010, 14, R23.	5.8	215
104	Diagnosing Delayed Cerebral Ischemia With Different CT Modalities in Patients With Subarachnoid Hemorrhage With Clinical Deterioration. Stroke, 2009, 40, 3493-3498.	2.0	108
105	Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability. Neuroradiology, 2009, 51, 445-451.	2.2	54
106	Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology, 2009, 51, 813-819.	2.2	217
107	Age- and anatomy-related values of blood-brain barrier permeability measured by perfusion-CT in non-stroke patients. Journal of Neuroradiology, 2009, 36, 219-227.	1.1	23
108	Optimal Duration of Acquisition for Dynamic Perfusion CT Assessment of Blood-Brain Barrier Permeability Using the Patlak Model. American Journal of Neuroradiology, 2009, 30, 1366-1370.	2.4	36

#	Article	IF	CITATIONS
109	Dynamic Perfusion CT Assessment of the Blood-Brain Barrier Permeability: First Pass versus Delayed Acquisition. American Journal of Neuroradiology, 2008, 29, 1671-1676.	2.4	54
110	Accuracy and Anatomical Coverage of Perfusion CT Assessment of the Blood-Brain Barrier Permeability: One Bolus versus Two Boluses. Cerebrovascular Diseases, 2008, 26, 600-605.	1.7	12
111	Prevalence, risk factors, and long-term outcomes of cerebral ischemia in hospitalized COVID-19 patients – study rationale and protocol of the CORONIS study: A multicentre prospective cohort study. European Stroke Journal, 0, , 239698732210925.	5.5	2