Jeremy H Lakey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9405938/publications.pdf

Version: 2024-02-01

87888 95266 5,259 132 38 68 citations g-index h-index papers 140 140 140 6071 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood, 2011, 118, 2656-2658.	1.4	382
2	Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophysical Chemistry, 2001, 93, 215-230.	2.8	308
3	Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models. Langmuir, 2015, 31, 404-412.	3.5	271
4	Surface plasmon resonance in protein–membrane interactions. Chemistry and Physics of Lipids, 2006, 141, 169-178.	3.2	201
5	Two-step Membrane Binding by Equinatoxin II, a Pore-forming Toxin from the Sea Anemone, Involves an Exposed Aromatic Cluster and a Flexible Helix. Journal of Biological Chemistry, 2002, 277, 41916-41924.	3.4	185
6	Crystal structure of a colicin N fragment suggests a model for toxicity. Structure, 1998, 6, 863-874.	3.3	134
7	Disparate proteins use similar architectures to damage membranes. Trends in Biochemical Sciences, 2008, 33, 482-490.	7.5	130
8	Emerging techniques for investigating molecular interactions at lipid membranes. BBA - Biomembranes, 1998, 1376, 319-338.	8.0	121
9	A Novel Mechanism of Pore Formation. Journal of Biological Chemistry, 2003, 278, 22678-22685.	3.4	121
10	Ion-Channel Gating in Transmembrane Receptor Proteins: Functional Activity in Tethered Lipid Membranes. Angewandte Chemie - International Edition, 1999, 38, 389-392.	13.8	117
11	Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic. Journal of the Royal Society Interface, 2013, 10, 20130810.	3.4	103
12	Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5034-43.	7.1	103
13	Measuring protein—protein interactions. Current Opinion in Structural Biology, 1998, 8, 119-123.	5.7	97
14	An Accurate In Vitro Model of the <i>E.â€coli</i> Envelope. Angewandte Chemie - International Edition, 2015, 54, 11952-11955.	13.8	91
15	Voltage gating is a fundamental feature of porin and toxin \hat{l}^2 -barrel membrane channels. FEBS Letters, 1998, 431, 305-308.	2.8	87
16	Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. FEBS Journal, 1991, 196, 599-607.	0.2	84
17	The molten globule intermediate for protein insertion or translocation through membranes. Trends in Cell Biology, 1992, 2, 343-348.	7.9	83
18	Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin. Analytical Biochemistry, 2005, 344, 43-52.	2.4	83

#	Article	IF	CITATIONS
19	The voltage-dependent activity of Escherichia coli porins in different planar bilayer reconstitutions. FEBS Journal, 1989, 186, 303-308.	0.2	76
20	Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of <i>Escherichia coli</i> Biomacromolecules, 2013, 14, 2014-2022.	5.4	76
21	The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane. Langmuir, 2016, 32, 3485-3494.	3.5	74
22	Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry, 1992, 31, 7294-7300.	2.5	73
23	Molecular characterization of the B-box protein-protein interaction motif of the ETS-domain transcription factor Elk-1. EMBO Journal, 1997, 16, 2431-2440.	7.8	71
24	Voltage-gating of Escherichia coli porin: a cystine-scanning mutagenesis study of loop 3 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1998, 275, 171-176.	4.2	70
25	Stable self-assembly of a protein engineering scaffold on gold surfaces. Protein Science, 2002, 11, 1917-1925.	7.6	70
26	All in the family: the toxic activity of pore-forming colicins. Toxicology, 1994, 87, 85-108.	4.2	69
27	An ion-channel-containing model membrane: structural determination by magnetic contrast neutron reflectometry. Soft Matter, 2009, 5, 2576-2586.	2.7	67
28	Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7587-E7594.	7.1	67
29	Distribution of mechanical stress in the Escherichia coli cell envelope. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2566-2575.	2.6	66
30	Macromolecular organisation of recombinantYersinia pestisF1 antigen and the effect of structure on immunogenicity. FEMS Immunology and Medical Microbiology, 1998, 21, 213-221.	2.7	64
31	Discovery of critical Tol A-binding residues in the bactericidal toxin colicin N: a biophysical approach. Molecular Microbiology, 1998, 28, 1335-1343.	2.5	58
32	Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering. Journal of Biological Chemistry, 2012, 287, 337-346.	3.4	54
33	Dual Proteolytic Pathways Govern Glycolysis and Immune Competence. Cell, 2014, 159, 1578-1590.	28.9	54
34	Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface. Nature Communications, 2020, 11, 851.	12.8	49
35	The structural orientation of antibody layers bound to engineered biosensor surfaces. Biomaterials, 2011, 32, 3303-3311.	11.4	48
36	Colicin N Binds to the Periphery of Its Receptor andÂTranslocator, Outer Membrane Protein F. Structure, 2008, 16, 371-379.	3.3	47

#	Article	IF	Citations
37	Refolding of Escherichia coli outer membrane protein F in detergent creates LPS-free trimers and asymmetric dimers. Biochemical Journal, 2005, 392, 375-381.	3.7	40
38	The antibacterial toxin colicin <scp>N</scp> binds to the inner core of lipopolysaccharide and close to its translocator protein. Molecular Microbiology, 2014, 92, 440-452.	2.5	40
39	The TolA-recognition Site of Colicin N. ITC, SPR and Stopped-flow Fluorescence Define a Crucial 27-residue Segment. Journal of Molecular Biology, 2000, 304, 621-632.	4.2	38
40	Neutrons for biologists: a beginner's guide, or why you should consider using neutrons. Journal of the Royal Society Interface, 2009, 6, S567-73.	3.4	36
41	Different Sensitivities to Acid Denaturation within a Family of Proteins:Â Implications for Acid Unfolding and Membrane Translocationâ€. Biochemistry, 1996, 35, 13180-13185.	2.5	34
42	Immunogenicity of a Yersinia pestis Vaccine Antigen Monomerized by Circular Permutation. Infection and Immunity, 2006, 74, 6624-6631.	2.2	34
43	The Pasteurella multocida toxin interacts with signalling pathways to perturb cell growth and differentiation. International Journal of Medical Microbiology, 2004, 293, 505-512.	3.6	33
44	The role of electrostatic charge in the membrane insertion of colicin A. Calculation and mutation. FEBS Journal, 1994, 220, 155-163.	0.2	32
45	Expression of proteins using the third domain of the Escherichia coli periplasmic-protein TolA as a fusion partner. Protein Expression and Purification, 2003, 28, 173-181.	1.3	32
46	Monitoring the assembly of antibody-binding membrane protein arrays using polarised neutron reflection. European Biophysics Journal, 2008, 37, 639-645.	2.2	32
47	Identification and characterization of the Pasteurella multocida toxin translocation domain. Molecular Microbiology, 2004, 54, 239-250.	2.5	31
48	Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons. Nature Communications, 2016, 7, 13495.	12.8	31
49	A 136-amino-acid-residue COOH-terminal fragment of colicin A is endowed with ionophoric activity. FEBS Journal, 1990, 189, 409-413.	0.2	30
50	An Approach To Prepare Membrane Proteins for Single-Molecule Imaging. Angewandte Chemie - International Edition, 2006, 45, 3252-3256.	13.8	30
51	Alhydrogel® adjuvant, ultrasonic dispersion and protein binding: A TEM and analytical study. Micron, 2012, 43, 192-200.	2.2	30
52	Probing the orientation of yeast VDAC1 in vivo. FEBS Letters, 2009, 583, 739-742.	2.8	29
53	Increasing the Potency of an Alhydrogel-Formulated Anthrax Vaccine by Minimizing Antigen-Adjuvant Interactions. Vaccine Journal, 2013, 20, 1659-1668.	3.1	28
54	Concerted Folding and Binding of a Flexible Colicin Domain to Its Periplasmic Receptor TolA. Journal of Biological Chemistry, 2003, 278, 21860-21868.	3.4	27

#	Article	IF	Citations
55	A Natively Unfolded Toxin Domain Uses Its Receptor as a Folding Template. Journal of Biological Chemistry, 2004, 279, 22002-22009.	3.4	27
56	The influence of secretory-protein charge on late stages of secretion from the Gram-positive bacterium Bacillus subtilis. Biochemical Journal, 2000, 350, 31-39.	3.7	25
57	Examining Protein–Lipid Complexes Using Neutron Scattering. Methods in Molecular Biology, 2013, 974, 119-150.	0.9	24
58	The lipopeptide antibiotic A21978C has a specific interaction with DMPC only in the presence of calcium ions. Biochimica Et Biophysica Acta - Biomembranes, 1989, 985, 60-66.	2.6	23
59	Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro. BMC Biology, 2010, 8, 57.	3.8	23
60	Outer Membrane Protein F Stabilised with Minimal Amphipol Forms Linear Arrays and LPS-Dependent 2D Crystals. Journal of Membrane Biology, 2014, 247, 949-956.	2.1	23
61	Displacement of OmpF loop 3 is not required for the membrane translocation of colicins N and A in vivo. FEBS Letters, 1998, 432, 117-122.	2.8	22
62	Silicon Surface Nanostructuring for Covalent Immobilization of Biomolecules. Journal of Physical Chemistry C, 2008, 112, 9308-9314.	3.1	22
63	The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine, 2010, 28, 5746-5754.	3.8	22
64	High coverage fluid-phase floating lipid bilayers supported by ω-thiolipid self-assembled monolayers. Journal of the Royal Society Interface, 2014, 11, 20140447.	3.4	22
65	Peeking into a secret world of pore-forming toxins: membrane binding processes studied by surface plasmon resonance. Toxicon, 2003, 42, 225-228.	1.6	19
66	Interacion of the colicin-A pore-forming domain with negatively charged phospholipds. FEBS Journal, 1993, 211, 625-633.	0.2	18
67	Unfolding transitions of Bacillus anthracis protective antigen. Archives of Biochemistry and Biophysics, 2007, 465, 1-10.	3.0	18
68	The Two-State Prehensile Tail of the Antibacterial Toxin Colicin N. Biophysical Journal, 2017, 113, 1673-1684.	0.5	18
69	Self-Assembled Fluid Phase Floating Membranes with Tunable Water Interlayers. Langmuir, 2019, 35, 13735-13744.	3.5	18
70	High level expression of His-tagged colicin pore-forming domains and reflections on the sites for pore formation in the inner membrane. Biochimie, 2002, 84, 477-483.	2.6	17
71	Circular Dichroism Spectroscopy of Folding in a Protein Monolayer. Angewandte Chemie - International Edition, 2005, 44, 4801-4804.	13.8	17
72	Helix orientations in membrane-associated Bcl-XL determined by 15N-solid-state NMR spectroscopy. European Biophysics Journal, 2007, 37, 71-80.	2.2	17

#	Article	lF	CITATIONS
73	Interfacial Interactions of Pore-Forming Colicins. Advances in Experimental Medicine and Biology, 2010, 677, 81-90.	1.6	17
74	Reversible Nonâ€Stick Behaviour of a Bacterial Protein Polymer Provides a Tuneable Molecular Mimic for Cell and Tissue Engineering. Advanced Materials, 2014, 26, 2704-2709.	21.0	17
75	Engineered self-assembling monolayers for label free detection of influenza nucleoprotein. Biomedical Microdevices, 2015, 17, 9951.	2.8	17
76	Structural Investigations of Protein–Lipid Complexes Using Neutron Scattering. Methods in Molecular Biology, 2019, 2003, 201-251.	0.9	17
77	Recent advances in neutron reflectivity studies of biological membranes. Current Opinion in Colloid and Interface Science, 2019, 42, 33-40.	7.4	17
78	Surface Aspartate Residues Are Essential for the Stability of Colicin A P-Domain:  A Mechanism for the Formation of an Acidic Molten-Globule,. Biochemistry, 2002, 41, 1579-1586.	2.5	16
79	A Common Interaction for the Entry of Colicin N and Filamentous Phage into Escherichia coli. Journal of Molecular Biology, 2009, 388, 880-893.	4.2	16
80	Anthrax sub-unit vaccine: The structural consequences of binding rPA83 to Alhydrogel®. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 25-32.	4.3	16
81	Thermal stability and rheological properties of the â€~non-stick' Caf1 biomaterial. Biomedical Materials (Bristol), 2017, 12, 051001.	3.3	16
82	The unstructured domain of colicin N kills E scherichia coli. Molecular Microbiology, 2013, 89, 84-95.	2.5	15
83	Comparative analysis of the QUTR transcription repressor protein and the three C-terminal domains of the pentafunctional AROM enzyme. Biochemical Journal, 1996, 313, 941-950.	3.7	14
84	Antibacterial toxin colicin N and phage protein G3p compete with TolB for a binding site on TolA. Microbiology (United Kingdom), 2015, 161, 503-515.	1.8	14
85	Insight into Interface Engineering at TiO2/Dye through Molecularly Functionalized Caf1 Biopolymer. ACS Sustainable Chemistry and Engineering, 2018, 6, 1825-1836.	6.7	14
86	Selfâ€recognition by an intrinsically disordered protein. FEBS Letters, 2008, 582, 2673-2677.	2.8	13
87	Simple Detection of Protein Soft Structure Changes. Analytical Chemistry, 2010, 82, 3073-3076.	6.5	13
88	Human Miro Proteins Act as NTP Hydrolases through a Novel, Non-Canonical Catalytic Mechanism. International Journal of Molecular Sciences, 2018, 19, 3839.	4.1	13
89	Neutron Reflectometry of Membrane Protein Assemblies at the Solid/Liquid Interface. Australian Journal of Chemistry, 2005, 58, 674.	0.9	12
90	Stabilising and destabilising modifications of cysteines in the E. coliouter membrane porin protein OmpC. FEBS Letters, 1997, 411, 201-205.	2.8	11

#	Article	IF	CITATIONS
91	An oomycete NLP cytolysin forms transient small pores in lipid membranes. Science Advances, 2022, 8, eabj9406.	10.3	11
92	Determining OMP topology by computation, surface plasmon resonance and cysteine labelling: The test case of OMPG. Biochemical and Biophysical Research Communications, 2006, 351, 113-117.	2.1	10
93	Discovery of Biphasic Thermal Unfolding of OmpC with Implications for Surface Loop Stability. Biochemistry, 2010, 49, 9715-9721.	2.5	10
94	Deuterium Labeling Strategies for Creating Contrast in Structure–Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry. Methods in Enzymology, 2016, 566, 231-252.	1.0	10
95	Modular Protein Engineering Approach to the Functionalization of Gold Nanoparticles for Use in Clinical Diagnostics. ACS Applied Nano Materials, 2018, 1, 3590-3599.	5.0	9
96	Tuneable hydrogels of Caf1 protein fibers. Materials Science and Engineering C, 2018, 93, 88-95.	7.3	9
97	A Thermally Reformable Protein Polymer. CheM, 2020, 6, 3132-3151.	11.7	9
98	A manufacturable surface-biology platform for nano applications; Cell culture, analyte detection, diagnostics sensors. Industrial Biotechnology, 2005, 1, 185-189.	0.8	7
99	An Accurate In Vitro Model of the <i>E.â€coli</i> Envelope. Angewandte Chemie, 2015, 127, 12120-12123.	2.0	7
100	Engineered mosaic protein polymers; a simple route to multifunctional biomaterials. Journal of Biological Engineering, 2019, 13, 54.	4.7	7
101	Induction of the immunoprotective coat of Yersinia pestis at body temperature is mediated by the Caf1R transcription factor. BMC Microbiology, 2019, 19, 68.	3.3	7
102	Self-Assembly of Protein Monolayers Engineered for Improved Monoclonal Immunoglobulin G Binding. International Journal of Molecular Sciences, 2011, 12, 5157-5167.	4.1	6
103	Unraveling the molecular determinants of the anti-phagocytic protein cloak of plague bacteria. PLoS Pathogens, 2022, 18, e1010447.	4.7	6
104	High-yield expression and purification of soluble forms of the anti-apoptotic Bcl-xL and Bcl-2 as TolAllI-fusion proteins. Protein Expression and Purification, 2008, 60, 214-220.	1.3	5
105	Hydrogels of engineered bacterial fimbriae can finely tune 2D human cell culture. Biomaterials Science, 2021, 9, 2542-2552.	5.4	5
106	Studying the surfaces of bacteria using neutron scattering: finding new openings for antibiotics. Biochemical Society Transactions, 2020, 48, 2139-2149.	3.4	5
107	Exploiting neutron scattering contrast variation in biological membrane studies. Biophysics Reviews, 2022, 3, .	2.7	5
108	A generic expression system to produce proteins that co-assemble with alkane thiol SAM. International Journal of Nanomedicine, 2008, 3, 287.	6.7	4

#	Article	IF	CITATIONS
109	In situ study of the impact of acidic and neutral deposition pH on alkane phosphate film formation and stability on TiO2. RSC Advances, 2013, 3, 2581.	3.6	4
110	Determining the amphipol distribution within membrane-protein fibre samples using small-angle neutron scattering. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1192-1199.	2.3	4
111	Probing the oligomeric re-assembling of bacterial fimbriae in vitro: a small-angle X-ray scattering and analytical ultracentrifugation study. European Biophysics Journal, 2021, 50, 597-611.	2.2	3
112	Secondary structure of Streptococcus downei GTF-I glucansucrase. FEMS Microbiology Letters, 1999, 177, 243-248.	1.8	3
113	Exploiting Meltable Protein Hydrogels to Encapsulate and Culture Cells in 3D. Macromolecular Bioscience, 2022, 22, .	4.1	3
114	Protein–nucleic acid interactions. Current Opinion in Structural Biology, 2001, 11, 9-10.	5.7	1
115	Macromolecular assemblages. Current Opinion in Structural Biology, 2001, 11, 139-140.	5.7	1
116	Lipid Interactions of α-Helical Protein Toxins. , 2006, , 139-162.		1
117	Recombinant anthrax protective antigen: Observation of aggregation phenomena by TEM reveals specific effects of sterols. Micron, 2017, 93, 1-8.	2.2	1
118	Helix N-Cap Residues Drive the Acid Unfolding That Is Essential in the Action of the Toxin Colicin A. Biochemistry, 2019, 58, 4882-4892.	2.5	1
119	Investigation of mutations (L41F, F17M, N57E, Y99F_Y134W) effects on the TolAllI-UnaG fluorescence protein's unconjugated bilirubin (UC-BR) binding ability and thermal stability properties. Preparative Biochemistry and Biotechnology, 2021, , 1-10.	1.9	1
120	Carbohydrates and glycoconjugates Biophysical methods Web alert. Current Opinion in Structural Biology, 1998, 8, 543-544.	5.7	0
121	Carbohydrates and glycoconjugates Biophysical methods. Current Opinion in Structural Biology, 1999, 9, 545-546.	5.7	0
122	Catalysis and regulation: Proteins. Current Opinion in Structural Biology, 1999, 9, 659-660.	5.7	0
123	Lipids membrane proteins engineering and design web alert. Current Opinion in Structural Biology, 1999, 9, 423-424.	5.7	0
124	Theory and simulation: Macromolecular assemblages Web alert. Current Opinion in Structural Biology, 2000, 10, 135-136.	5.7	0
125	Biophysical methods. Current Opinion in Structural Biology, 2000, 10, 505-506.	5.7	0
126	Membranes Engineering and design. Current Opinion in Structural Biology, 2001, 11, 391-392.	5.7	0

#	Article	IF	CITATIONS
127	Web Alert: Biophysical methods. Current Opinion in Structural Biology, 2001, 11, 511-512.	5.7	O
128	Theory and simulation Macromolecular assemblages. Current Opinion in Structural Biology, 2002, 12, 141-142.	5.7	0
129	One and Two Dimensional Arrays of Membrane Proteins Stabilized by Amphipol. Microscopy and Microanalysis, 2014, 20, 1208-1209.	0.4	O
130	Pore-Forming Colicins: Unusual Ion Channels – Unusually Regulated. Springer Series in Biophysics, 2015, , 185-208.	0.4	0
131	Membrane-Disrupting Proteins. , 2016, , 1-11.		O
132	Membrane-Disrupting Proteins., 2019,, 729-739.		0