Matteo Serino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9404957/publications.pdf Version: 2024-02-01

MATTEO SEDINO

#	Article	IF	CITATIONS
1	Intestinal gluconeogenesis shapes gut microbiota, fecal and urine metabolome in mice with gastric bypass surgery. Scientific Reports, 2022, 12, 1415.	3.3	4
2	Microbiota medicine: towards clinical revolution. Journal of Translational Medicine, 2022, 20, 111.	4.4	87
3	Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome, 2021, 9, 104.	11.1	70
4	The Genotoxin Colibactin Shapes Gut Microbiota in Mice. MSphere, 2020, 5, .	2.9	34
5	Evolution of Gut Microbiome and Metabolome in Suspected Necrotizing Enterocolitis: A Case-Control Study. Journal of Clinical Medicine, 2020, 9, 2278.	2.4	16
6	Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nature Communications, 2019, 10, 3224.	12.8	39
7	Structure function relationships in three lipids A from the Ralstonia genus rising in obese patients. Biochimie, 2019, 159, 72-80.	2.6	13
8	A Twoâ€Week Treatment with Plant Extracts Changes Gut Microbiota, Caecum Metabolome, and Markers of Lipid Metabolism in ob/ob Mice. Molecular Nutrition and Food Research, 2019, 63, e1900403.	3.3	16
9	SCFAs — the thin microbial metabolic line between good and bad. Nature Reviews Endocrinology, 2019, 15, 318-319.	9.6	74
10	Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 449-459.	5.7	57
11	Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. Journal of Molecular Biology, 2018, 430, 581-590.	4.2	22
12	Gut Microbiota Interacts with Markers of Adipose Tissue Browning, Insulin Action and Plasma Acetate in Morbid Obesity. Molecular Nutrition and Food Research, 2018, 62, 1700721.	3.3	73
13	Oral health and microbiota status in professional rugby players: A case-control study. Journal of Dentistry, 2018, 79, 53-60.	4.1	16
14	Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine, 2018, 24, 1070-1080.	30.7	465
15	Periodontitis induced by <i>Porphyromonas gingivalis</i> drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut, 2017, 66, 872-885.	12.1	210
16	Young microbes for adult obesity. Pediatric Obesity, 2017, 12, e28-e32.	2.8	15
17	Associations between hepatic miRNA expression, liver triacylglycerols and gut microbiota during metabolic adaptation to high-fat diet in mice. Diabetologia, 2017, 60, 690-700.	6.3	52
18	Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23, 850-858.	30.7	1,165

MATTEO SERINO

#	Article	IF	CITATIONS
19	Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Molecular Systems Biology, 2017, 13, 921.	7.2	43
20	Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatric Research, 2016, 80, 777-784.	2.3	104
21	Periodontal dysbiosis linked to periodontitis is associated with cardiometabolic adaptation to high-fat diet in mice. American Journal of Physiology - Renal Physiology, 2016, 310, G1091-G1101.	3.4	20
22	Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology, 2016, 64, 2015-2027.	7.3	230
23	MicroRNAs: Decoders of Dysbiosis into Metabolic Diseases?. Journal of Diabetes & Metabolism, 2016, 7, .	0.2	1
24	Defective <scp>NOD</scp> 2 peptidoglycan sensing promotes dietâ€induced inflammation, dysbiosis, and insulin resistance. EMBO Molecular Medicine, 2015, 7, 259-274.	6.9	160
25	Gut Microbiota Interacts With Brain Microstructure and Function. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4505-4513.	3.6	130
26	The Gut Microbiota Regulates Intestinal CD4ÂT Cells Expressing RORÎ ³ t and Controls Metabolic Disease. Cell Metabolism, 2015, 22, 100-112.	16.2	248
27	Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology, 2014, 14, 189.	2.0	1,187
28	Inflammation and insulin resistance exert dual effects on adipose tissue tumor protein 53 expression. International Journal of Obesity, 2014, 38, 737-745.	3.4	22
29	Managing the manager: Gut microbes, stem cells and metabolism. Diabetes and Metabolism, 2014, 40, 186-190.	2.9	14
30	Far from the Eyes, Close to the Heart: Dysbiosis of Gut Microbiota and Cardiovascular Consequences. Current Cardiology Reports, 2014, 16, 540.	2.9	81
31	A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-2537.	6.3	109
32	The gut microbiota profile is associated with insulin action in humans. Acta Diabetologica, 2013, 50, 753-761.	2.5	50
33	Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Molecular Metabolism, 2013, 2, 281-291.	6.5	84
34	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	4.4	112
35	Study of lactoferrin gene expression in human and mouse adipose tissue, human preadipocytes and mouse 3T3-L1 fibroblasts. Association with adipogenic and inflammatory markers. Journal of Nutritional Biochemistry, 2013, 24, 1266-1275.	4.2	36
36	Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut, 2012, 61, 543-553.	12.1	511

MATTEO SERINO

#	Article	IF	CITATIONS
37	Intestinal MicrobiOMICS to Define Health and Disease in Human and Mice. Current Pharmaceutical Biotechnology, 2012, 13, 746-758.	1.6	34
38	Microbes On-Air. Journal of Clinical Gastroenterology, 2012, 46, S27-S28.	2.2	15
39	Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. International Journal of Obesity, 2012, 36, 1442-1449.	3.4	164
40	High-Fat Diet Induces Periodontitis in Mice through Lipopolysaccharides (LPS) Receptor Signaling: Protective Action of Estrogens. PLoS ONE, 2012, 7, e48220.	2.5	67
41	Galectin-3 ablation protects mice from diet-induced NASH: A major scavenging role for galectin-3 in liver. Journal of Hepatology, 2011, 54, 975-983.	3.7	127
42	Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control. PLoS ONE, 2011, 6, e20700.	2.5	124
43	Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetologica, 2011, 48, 257-273.	2.5	199
44	Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia, 2011, 54, 3055-3061.	6.3	283
45	Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 75-77.	0.5	0
46	CD14 Modulates Inflammation-Driven Insulin Resistance. Diabetes, 2011, 60, 2179-2186.	0.6	83
47	Lipid-Induced Peroxidation in the Intestine Is Involved in Glucose Homeostasis Imbalance in Mice. PLoS ONE, 2011, 6, e21184.	2.5	9
48	Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2010, 4, 75-77.	0.5	0
49	The gut microbiota ecology: a new opportunity for the treatment of metabolic diseases ?. Frontiers in Bioscience - Landmark, 2009, 14, 5107.	3.0	52
50	Accelerated Lipid-Induced Atherogenesis in Galectin-3-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 831-836.	2.4	85
51	A role for the gut-to-brain GLP-1-dependent axis in the control of metabolism. Current Opinion in Pharmacology, 2009, 9, 744-752.	3.5	47
52	Intestinal microflora and metabolic diseases. Diabetes and Metabolism, 2009, 35, 262-272.	2.9	67
53	Adiponectin isoforms are not associated with the severity of coronary atherosclerosis but with undiagnosed diabetes in patients affected by stable CAD. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 54-60.	2.6	23
54	Tissue Inhibitor of Metalloproteinase 3 Deficiency Causes Hepatic Steatosis and Adipose Tissue Inflammation in Mice. Gastroenterology, 2009, 136, 663-672.e4.	1.3	103

4

MATTEO SERINO

#	Article	IF	CITATIONS
55	Flore intestinale: deÂnouveaux concepts pourÂlaÂrégulation duÂmétabolisme énergétique. Sang Thrombose Vaisseaux, 2009, 21, 322-333.	0.1	Ο
56	Mice Heterozygous for Tumor Necrosis Factor-Î \pm Converting Enzyme Are Protected From Obesity-Induced Insulin Resistance and Diabetes. Diabetes, 2007, 56, 2541-2546.	0.6	104
57	We-P11:122 Increased TNF-alpha in patients affected by coronary artery disease is associated to undiagnosed impaired glucose metabolism. Role of pioglitazone. Atherosclerosis Supplements, 2006, 7, 372-373.	1.2	0
58	Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-Â. Journal of Clinical Investigation, 2005, 115, 3494-3505.	8.2	141