Viktor Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/940474/publications.pdf Version: 2024-02-01

VINTOR STEIN

#	Article	IF	CITATIONS
1	Functional Nanopore Screen: A Versatile High-Throughput Assay to Study and Engineer Protein Nanopores in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 2070-2079.	3.8	4
2	iFLinkC-X: A Scalable Framework to Assemble Bespoke Genetically Encoded Co-polymeric Linkers of Variable Lengths and Amino Acid Composition. Bioconjugate Chemistry, 2022, 33, 1415-1421.	3.6	3
3	Linker Engineering in the Context of Synthetic Protein Switches and Sensors. Trends in Biotechnology, 2021, 39, 731-744.	9.3	28
4	Synthetic protein switches: Combinatorial linker engineering with iFLinkC. Methods in Enzymology, 2021, 647, 231-255.	1.0	4
5	Ultrasensitive and Selective Protein Recognition with Nanobodyâ€Functionalized Synthetic Nanopores. Small, 2021, 17, e2101066.	10.0	12
6	Engineering artificial signalling functions with proteases. Current Opinion in Biotechnology, 2020, 63, 1-7.	6.6	14
7	Ultrasensitive and Selective Copper(II) Detection: Introducing a Bioinspired and Robust Sensor. Chemistry - A European Journal, 2020, 26, 8511-8517.	3.3	18
8	iFLinkC: an iterative functional linker cloning strategy for the combinatorial assembly and recombination of linker peptides with functional domains. Nucleic Acids Research, 2020, 48, e24-e24.	14.5	55
9	Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers. Journal of Membrane Biology, 2019, 252, 173-182.	2.1	3
10	Synthetic Protein Switches: Theoretical and Experimental Considerations. Methods in Molecular Biology, 2017, 1596, 3-25.	0.9	3
11	Engineering and Characterizing Synthetic Protease Sensors and Switches. Methods in Molecular Biology, 2017, 1596, 197-218.	0.9	3
12	Ultrasensitive Scaffold-Dependent Protease Sensors with Large Dynamic Range. ACS Synthetic Biology, 2017, 6, 1337-1342.	3.8	29
13	Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform. Journal of the American Chemical Society, 2016, 138, 10108-10111.	13.7	48
14	Engineering PQQ-glucose dehydrogenase into an allosteric electrochemical Ca ²⁺ sensor. Chemical Communications, 2016, 52, 485-488.	4.1	39
15	Semisynthetic tRNA Complement Mediates <i>in Vitro</i> Protein Synthesis. Journal of the American Chemical Society, 2015, 137, 4404-4413.	13.7	27
16	Synthetic protein switches: design principles and applications. Trends in Biotechnology, 2015, 33, 101-110.	9.3	135
17	Towards the Systematic Mapping and Engineering of the Protein Prenylation Machinery in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0120716.	2.5	20
18	Protease-based synthetic sensing and signal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15934-15939.	7.1	70

VIKTOR STEIN

#	Article	IF	CITATIONS
19	Assembling Linear DNA Templates for In Vitro Transcription and Translation. Methods in Molecular Biology, 2012, 815, 67-78.	0.9	0
20	SNAP Dendrimers: Multivalent Protein Display on Dendrimer‣ike DNA for Directed Evolution. ChemBioChem, 2011, 12, 2208-2216.	2.6	24
21	Isothermal DNA amplification using the T4 replisome: circular nicking endonuclease-dependent amplification and primase-based whole-genome amplification. Nucleic Acids Research, 2010, 38, e201-e201.	14.5	26
22	An efficient method to assemble linear DNA templates for in vitro screening and selection systems. Nucleic Acids Research, 2009, 37, e122-e122.	14.5	22
23	SPORCalc: A development of a database analysis that provides putative metabolic enzyme reactions for ligand-based drug design. Computational Biology and Chemistry, 2009, 33, 149-159.	2.3	15
24	Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets. Analytical Chemistry, 2009, 81, 302-306.	6.5	240
25	Towards biological experimentation in microfludic microdroplets. Houille Blanche, 2009, 95, 127-133.	0.3	0
26	A Covalent Chemical Genotype–Phenotype Linkage for in vitro Protein Evolution. ChemBioChem, 2007, 8, 2191-2194.	2.6	33
27	Reaction Site Mapping of Xenobiotic Biotransformations. Journal of Chemical Information and Modeling, 2007, 47, 583-590.	5.4	100
28	New genotype–phenotype linkages for directed evolution of functional proteins. Current Opinion in Structural Biology, 2005, 15, 472-478.	5.7	125