
T V Torchynska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9403805/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGa1â^'xAsâ^•GaAs structures. Journal of Applied Physics, 2007, 101, 024323.	2.5	77
2	The role of oxidation on porous silicon photoluminescence and its excitation. Thin Solid Films, 2001, 381, 88-93.	1.8	48
3	Nature of visible luminescence and its excitation in Si–SiO systems. Journal of Luminescence, 2003, 102-103, 705-711.	3.1	46
4	Scanning photoluminescence spectroscopy in InAsâ^•InGaAs quantum-dot structures. Applied Physics Letters, 2004, 84, 5165-5167.	3.3	42
5	Size dependent emission stimulation in ZnO nanosheets. Journal of Luminescence, 2014, 149, 54-60.	3.1	42
6	Some aspects of exciton thermal exchange in InAs quantum dots coupled with InGaAs/GaAs quantum wells. Journal of Applied Physics, 2008, 104, .	2.5	40
7	Ballistic effect in red photoluminescence of Si wires. Physical Review B, 2002, 65, .	3.2	37
8	Ground and excited state energy trend inInAsâ^•InGaAsquantum dots monitored by scanning photoluminescence spectroscopy. Physical Review B, 2005, 72, .	3.2	34
9	Interface states and bio-conjugation of CdSe/ZnS core–shell quantum dots. Nanotechnology, 2009, 20, 095401.	2.6	33
10	Defect-related luminescence of Si/SiO2layers. Journal of Physics Condensed Matter, 2002, 14, 13217-13221.	1.8	30
11	Raman-scattering and structure investigations on porous SiC layers. Journal of Applied Physics, 2005, 97, 033507.	2.5	30
12	Photoluminescence of core-shell CdSe/ZnS quantum dots of different sizes. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S143-S145.	0.8	30
13	Defect related photoluminescence in Si wires. Physica B: Condensed Matter, 2001, 308-310, 1108-1112.	2.7	29
14	Some aspects of emission variation in InAs quantum dots coupled with symmetric quantum wells. Journal of Applied Physics, 2010, 108, .	2.5	29
15	Raman scattering and SEM study of bio-conjugated core-shell CdSe/ZnS quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 241-243.	0.8	28
16	Raman scattering study in bio-conjugated core-shell CdSe/ZnS quantum dots. Journal of Non-Crystalline Solids, 2008, 354, 2885-2887.	3.1	26
17	Localized excitons in InAs self-assembled quantum dots embedded in InGaAs/GaAs multi-quantum wells. Physica Status Solidi A, 2003, 195, 209-213.	1.7	24
18	Photoluminescence scanning on InAs/InGaAs quantum dot structures. Applied Surface Science, 2006, 252, 5542-5545.	6.1	22

#	Article	IF	CITATIONS
19	Peculiarities of Raman scattering in bioconjugated CdSe/ZnS quantum dots. Nanotechnology, 2010, 21, 134016.	2.6	22
20	Si quantum dot structures and their applications. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 51, 65-70.	2.7	22
21	Photoluminescence and Raman spectroscopy in porous SiC. Microelectronics Journal, 2005, 36, 536-538.	2.0	21
22	Structure and emission transformations in ZnO nanosheets at thermal annealing. Journal of Physics and Chemistry of Solids, 2013, 74, 431-435.	4.0	21
23	Optical properties of porous silicon surface. Microelectronics Journal, 2005, 36, 514-517.	2.0	18
24	Raman scattering characterization of macro- and nanoporous silicon. Applied Surface Science, 2005, 243, 30-35.	6.1	15
25	Optical characterization of crystalline silicon embedded in a-Si matrix. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1832-1836.	0.8	15
26	Photoluminescence of bioconjugated core-shell CdSeâ^•ZnS quantum dots. Journal of Vacuum Science & Technology B, 2009, 27, 836-838.	1.3	15
27	Photoluminescence mapping on InAs/InGaAs quantum dot structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2951-2954.	0.8	14
28	Nature of visible luminescence of co-sputtered Si–SiOx systems. Physica B: Condensed Matter, 2003, 340-342, 1119-1123.	2.7	13
29	Photoluminescence of Si nanocrystallites in different types of matrices. Journal of Non-Crystalline Solids, 2006, 352, 2484-2487.	3.1	13
30	Size dependent photoluminescence of SiC nanocrystals. Journal of Non-Crystalline Solids, 2008, 354, 2272-2275.	3.1	13
31	Optical and structural investigation of Si nanoclusters in amorphous hydrogenated silicon. Thin Solid Films, 2010, 518, S204-S207.	1.8	13
32	Transformation of photoluminescence spectra at the bioconjugation of core-shell CdSe/ZnS quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	13
33	Emission and structure investigations of Si nano-crystals embedded in amorphous silicon. Journal of Physics: Conference Series, 2007, 61, 1231-1235.	0.4	12
34	Photoluminescence variation in dot-in-a-well structures with different InAs quantum dot densities. Journal of Vacuum Science & Technology B, 2009, 27, 919-922.	1.3	12
35	Exciton related photoluminescence stimulation in SiC nanocrystals. Superlattices and Microstructures, 2009, 45, 222-227.	3.1	12
36	Variation of Raman spectra of CdSe/ZnS quantum dots at the bioconjugation. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	12

#	Article	IF	CITATIONS
37	Semiconductor II-VI Quantum Dots with Interface States and Their Biomedical Applications. , 0, , .		12
38	Photoluminescence study and parameter evaluation in InAs quantum dot-in-a-well structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 331-333.	3.5	12
39	Emission of Cu-related complexes in ZnO:Cu nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 156-162.	2.7	12
40	Radiative defects, emission and structure of ZnO nanocrystals obtained by electrochemical method. Materials Research Bulletin, 2017, 85, 161-167.	5.2	12
41	USXES AND OPTICAL PHENOMENA IN SI LOW-DIMENSIONAL STRUCTURES DEPENDENT ON MORPHOLOGY AND SILICON OXIDE COMPOSITION ON SI SURFACE. Surface Review and Letters, 2002, 09, 1047-1052.	1.1	11
42	Optical investigation of Si nano-crystals in amorphous silicon matrix. Microelectronics Journal, 2005, 36, 510-513.	2.0	11
43	Quantum emission efficiency of nanocrystalline and amorphous Si quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 56-61.	2.7	11
44	Raman scattering, emission, and deep defect evolution in ZnO:In thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	11
45	Carrier dynamics in InAs quantum dots embedded in InGaAs/GaAs multi quantum well structures. Journal of Physics: Conference Series, 2007, 61, 180-184.	0.4	10
46	Optical and structural properties of SiC nanocrystals. Journal of Materials Science: Materials in Electronics, 2008, 19, 682-686.	2.2	10
47	Photoluminescence peculiarities in InGaAs/GaAs structures with different InAs quantum dot densities. Journal of Luminescence, 2013, 136, 75-79.	3.1	10
48	Defect related emission of ZnO and ZnO Cu nanocrystals prepared by electrochemical method. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 594-597.	0.8	10
49	Annealing impact on emission and phase varying of Nd-doped Si-rich-HfO2 films prepared by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2020, 31, 4587-4594.	2.2	10
50	APPLICATION OF III-V MATERIALS IN SPACE SOLAR CELL ENGINEERING. Modern Physics Letters B, 2001, 15, 593-596.	1.9	9
51	Exciton capture and thermal escape in InAs dot-in-a-well laser structures. Superlattices and Microstructures, 2009, 45, 349-355.	3.1	9
52	Defect states and morphological evolution in mechanically processed ZnO + xC nanosystems as studied by EPR and photoluminescence spectroscopy. RSC Advances, 2016, 6, 58709-58722.	3.6	9
53	Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy. Journal of Electronic Materials, 2018, 47, 3927-3933.	2.2	8
54	Emission and HR-XRD study of MBE structures with InAs quantum dots and AlGaInAs strain reducing layers. Superlattices and Microstructures, 2018, 124, 153-159.	3.1	8

#	Article	IF	CITATIONS
55	The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots. Physica B: Condensed Matter, 2014, 453, 68-71.	2.7	7
56	Emission and elastic strain study in GaAs/In0.15Ga0.85As/InxGa1â^²xAs/GaAs quantum wells with embedded InAs quantum dots. Journal of Materials Science: Materials in Electronics, 2017, 28, 7126-7131.	2.2	7
57	Morphology, structure and emission of Al-doped ZnO nanocrystal films. Journal of Materials Science: Materials in Electronics, 2018, 29, 15452-15457.	2.2	7
58	Comparative investigation of photoluminescence of silicon wire structures and silicon oxide films. Journal of Physics and Chemistry of Solids, 2002, 63, 561-568.	4.0	6
59	Photoluminescence and structure investigations of Si nano-crystals in amorphous silicon matrix. Journal of Non-Crystalline Solids, 2006, 352, 1188-1191.	3.1	6
60	Photoluminescence Emission and Structure Diversity in ZnO:Ag Nanorods. Journal of Physics: Conference Series, 2015, 582, 012031.	0.4	6
61	Emission and HR-XRD study of InGaAs/GaAs quantum wells with InAs quantum dots grown at different temperatures. Journal of Materials Science: Materials in Electronics, 2017, 28, 17778-17783.	2.2	6
62	Light emission and structure of Nd-doped Si-rich-HfO2 films prepared by magnetron sputtering in different atmospheres. Materials Chemistry and Physics, 2019, 229, 263-268.	4.0	6
63	Light Emission in Nd Doped Si-Rich HfO2 Films Prepared by Magnetron Sputtering. Journal of Electronic Materials, 2020, 49, 3441-3449.	2.2	6
64	Modification of near band edge emission and structure with Ga-related clusters in Ga-doped ZnO nanocrystal films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	6
65	Exciton thermal escape in symmetric InAs quantum dots in InGaAs/GaAs well structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 379-381.	0.8	5
66	Photoluminescence trend in mixture of zinc oxide and carbon nanoparticles after mechanical processing. Materials Science in Semiconductor Processing, 2015, 37, 82-86.	4.0	5
67	Surface and defect modifications in mixture of ZnO and carbon nanocrystals at mechanical processing. Materials Science in Semiconductor Processing, 2016, 47, 37-43.	4.0	5
68	Light emitting mechanisms in Siâ€rich SiN _x films with different silicon nitride stoichiometry. Physica Status Solidi (B): Basic Research, 2017, 254, 1600670.	1.5	5
69	Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules. Journal of Photochemistry and Photobiology B: Biology, 2017, 170, 309-313.	3.8	5
70	Emitting modification in Si-rich-SiNx films versus silicon nitride compositions. MRS Communications, 2017, 7, 280-285.	1.8	5
71	Phase transformation and light emission in Er-doped Si-rich HfO2 films prepared by magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 031503.	2.1	5
72	Emission and HR-XRD varying in GaAs/AlGaInAs heterostructures with InAs quantum dots at annealing. Journal of Materials Science: Materials in Electronics, 2020, 31, 2643-2649	2.2	5

#	Article	IF	CITATIONS
73	Annealing Impact on Emission of InAs Quantum Dots in GaAs/Al0.30Ga0.70As Structures with Different Capping Layers. Journal of Electronic Materials, 2021, 50, 4633-4641.	2.2	5
74	Transmittance, Absorbance and Emission of Ga related Defects in Ga-doped ZnO Nanocrystal Films. MRS Advances, 2020, 5, 3015-3022.	0.9	5
75	The interrelation of surface relief of porous silicon with specific features of Raman spectra. Semiconductors, 2002, 36, 558-563.	0.5	4
76	Raman scattering investigation on porous SiC layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2962-2965.	0.8	4
77	Magnetic field effect on the visible photoluminescence of porous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3314-3318.	0.8	4
78	Comparative investigation of optical and structural properties of porous SiC. Microelectronics Journal, 2008, 39, 494-498.	2.0	4
79	Photoluminescence of InAs quantum dots embedded in AlGaAs/InGaAs quantum wells with strain reducing layer. Superlattices and Microstructures, 2014, 71, 168-176.	3.1	4
80	EPR detection of sphalerite ZnO in mechanically treated ZnO+0.1C nanosystem. Materials Science in Semiconductor Processing, 2015, 39, 775-780.	4.0	4
81	Physical reasons of emission transformation in infrared CdSeTe/ZnS quantum dots at bioconjugation. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 87-92.	2.7	4
82	Aspects of emission variation in CdSeTe/ZnS quantum dots conjugated to antibodies. Journal of Materials Science: Materials in Electronics, 2017, 28, 7047-7052.	2.2	4
83	Effect of plasmon–phonon interaction on the infrared reflection spectra of MgxZn1-xO/Al2O3 structures. Journal of Materials Science: Materials in Electronics, 2020, 31, 7539-7546.	2.2	4
84	Raman scattering, emission and crystalline phase evolutions in Nd-doped Si-rich HfO2:N films. Journal of Materials Science: Materials in Electronics, 2021, 32, 17473-17481.	2.2	4
85	Ballistic regime and photoluminescence excitation in Si wires and dots. Journal of Luminescence, 2003, 102-103, 551-556.	3.1	3
86	Visible photoluminescence of Ge enriched SiOx layers. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 619-622.	1.7	3
87	Optical and structural evaluation of SiC nanocrystallites. Journal of Physics: Conference Series, 2007, 61, 243-246.	0.4	3
88	X-ray diffraction and electron paramagnetic resonance study of porous 6H-SiC. Journal of Vacuum Science & Technology B, 2009, 27, 849.	1.3	3
89	Reconstruction of potentials in quantum dots and other small symmetric structures. Mathematical Methods in the Applied Sciences, 2010, 33, 469-472.	2.3	3
90	An EPR investigation of SiOx films with columnar structure. Physica B: Condensed Matter, 2014, 453, 26-28.	2.7	3

#	Article	IF	CITATIONS
91	Blue Emission Stimulation in Mixture of ZnO and Carbon Nanocrystals at Mechanical Processing. ECS Transactions, 2015, 66, 297-303.	0.5	3
92	Photoluminescence and its excitation mechanisms in Si wires and dots. Physica Status Solidi A, 2003, 197, 382-387.	1.7	2
93	Multiple excited state modification in InAs/InGaAs quantum dot structures at high excitation power. Microelectronics Journal, 2005, 36, 186-189.	2.0	2
94	Defect and nano-crystallite photoluminescence in Si-SiOx systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2990-2993.	0.8	2
95	Ballistic effect and optical properties of Si nanocrystallite structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 375-378.	0.8	2
96	Photoluminescence energy trend for ground and excited states in InAs quantum dots in a well InGaAs/GaAs structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 272-275.	0.8	2
97	Modification of optical properties at bioconjugation of core-shell CdSe/ZnS quantum dots. Journal of Physics: Conference Series, 2010, 245, 012013.	0.4	2
98	Emission related to exciton-polariton coupling in porous SiC. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1974-1977.	0.8	2
99	Dispersion of photoluminescence peak positions in asymmetric InAs QD multi quantum well structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1388-1390.	0.8	2
100	Emission Dependent on composition of Si-rich-SiNX Films obtained by PECVD. IOP Conference Series: Materials Science and Engineering, 2017, 169, 012021.	0.6	2
101	Light emitting mechanisms dependent on stoichiometry of Si-rich-SiNx films grown by PECVD. Journal of Materials Science: Materials in Electronics, 2017, 28, 6977-6981.	2.2	2
102	Shell model of semiconductor quantum dots. , 2004, , .		1
103	Photoluminescence and photocurrent of Schottky diodes based on silicon nanocrystallites. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3019-3022.	0.8	1
104	Role of ballistic transport in photoluminescence excitation of Si nanocrystals. Journal of Non-Crystalline Solids, 2008, 354, 2296-2299.	3.1	1
105	Some reasons of emission variation in InAs quantum dot-in-a-well structures. Journal of Physics: Conference Series, 2010, 245, 012060.	0.4	1
106	Raman spectra and emission of CdSe/ZnS quantum dots bioconjugated to OC125 antibodies. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1627-1629.	0.8	1
107	Re-charging the luminescence states in CdSe/ZnS quantum dots at the conjugation to Osteopontin antibodies. Journal of Luminescence, 2012, 132, 1848-1852.	3.1	1
108	Double core Infrared (CdSeTe) / ZnS quantum dots conjugated to Papiloma virus antibodies. Materials Research Society Symposia Proceedings, 2013, 1534, A127-A132.	0.1	1

#	Article	IF	CITATIONS
109	EPR and emission study of silicon suboxide nanopillars. Materials Research Society Symposia Proceedings, 2013, 1617, 51-56.	0.1	1
110	Impact of capping layer type on emission of InAs quantum dots embedded in InGaAs/InxAlyGazAs/GaAs quantum wells. Journal of Applied Physics, 2014, 115, 014305.	2.5	1
111	Emission and Structure Varieties in ZnO:Ag Nanorods Obtained by Ultrasonic Spray Pyrolysis. Journal of Physics: Conference Series, 2014, 494, 012011.	0.4	1
112	InAs quantum dot emission and annealing impact in quantum wells with strain reduced InAlGaAs layers. Journal of Luminescence, 2015, 163, 40-46.	3.1	1
113	Emission and Structure-Varying ZnO and Carbon Nanocrystal Composite in Mechanical Processing. Journal of Electronic Materials, 2018, 47, 4296-4302.	2.2	1
114	Radiative Defect Varying in Aging ZnO:Ag Nanocrystals. Journal of Electronic Materials, 2018, 47, 4234-4238.	2.2	1
115	Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots. Journal of Electronic Materials, 2018, 47, 4254-4259.	2.2	1
116	Surface modification in mixture of ZnO + 3%C nanocrystals stimulated by mechanical processing. AIMS Materials Science, 2016, 3, 204-213.	1.4	1
117	Impact of Ga and In co-doping on morphology, structure, and emission of ZnO nanocrystal films. MRS Advances, 2021, 6, 928-931.	0.9	1
118	Mechanism of injection-enhanced defect transformation in LPE GaAs structures. Physica B: Condensed Matter, 1999, 273-274, 1037-1040.	2.7	0
119	Photoluminescence and surface structural investigations of low-dimensional silicon systems. Journal of Materials Science Letters, 2001, 20, 2061-2064.	0.5	0
120	Multishell photoluminescence from InAs/InGaAs quantum dots. , 2003, , .		0
121	GROUND AND EXCITED STATE PHOTOLUMINESCENCE MAPPING ON InAs/InGaAs QUANTUM DOT STRUCTURES. International Journal of Nanoscience, 2007, 06, 383-387.	0.7	0
122	Photoluminescence of Different Phase Si Nanoclusters in Amorphous Hydrogenated Silicon. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	0
123	Emission efficiency of crystalline and amorphous Si nanoclusters. , 2010, , .		0
124	Mechanism of photoluminescence investigation of Si nano-crystals embedded in SiO x. Proceedings of SPIE, 2010, , .	0.8	0
125	CdSe/ZnS quantum dots with interface states as biosensors. , 2011, , .		0
126	Elastic stress and emission nonhomogeneity in asymmetric InAs quantum dot in a well structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1391-1393.	0.8	0

#	Article	IF	CITATIONS
127	Si quantum dots and different aspects of applications. Proceedings of SPIE, 2011, , .	0.8	Ο
128	Raman spectra of CdSe/ZnS quantum dots bioconjugated to ovarian cancer antibodies. Materials Research Society Symposia Proceedings, 2012, 1376, 73.	0.1	0
129	Photoluminescence transformation of core/shell CdSe/ZnS quantum dots at the conjugation to biomolecules. Materials Research Society Symposia Proceedings, 2012, 1376, 53.	0.1	0
130	Si Quantum Dot Structures and Some Aspects of Applications. Materials Research Society Symposia Proceedings, 2013, 1534, A5-A12.	0.1	0
131	Double core infrared (CdSeTe) / ZnS quantum dots Conjugated to IgG antibodies. Materials Research Society Symposia Proceedings, 2013, 1534, A107-A112.	0.1	0
132	Modeling of the effect of bio-conjugation to anti-interleukin-10 antibodieson the photoluminescence of CdSe/ZnS quantum dots. Materials Research Society Symposia Proceedings, 2013, 1617, 145-150.	0.1	0
133	Emission modification in ZnO nanosheets at thermal annealing. Materials Research Society Symposia Proceedings, 2013, 1534, A151-A157.	0.1	0
134	Comparative study of Photoluminescence variation in InAs Quantum dots embedded in InAlGaAs Quantum wells. Materials Research Society Symposia Proceedings, 2013, 1534, A51-A56.	0.1	0
135	Emission variation in CdSe/ZnS quantum dots conjugated to Papilloma virus antibodies. Materials Research Society Symposia Proceedings, 2013, 1617, 139-144.	0.1	0
136	Emission and HR-XRD study in InAs quantum dot structures prepared at different QD's growth temperatures. Materials Research Society Symposia Proceedings, 2013, 1534, A75-A80.	0.1	0
137	Preface of the "Symposium on theory, modeling, investigation and simulation of low-dimensional semiconductor systems". , 2014, , .		0
138	Emission Diversity of ZnO Nanocrystals with Different Growth Temperatures. Materials Research Society Symposia Proceedings, 2014, 1675, 45-51.	0.1	0
139	Weak Quantum Confinement and Polaritons in ZnO and ZnO Cu Nanocrystals Prepared by Electrochemical Method. ECS Transactions, 2015, 66, 267-274.	0.5	0
140	Photoluminescence and structure study in mixture of ZnO and carbon nanoparticles during mechanical activation. Journal of Physics: Conference Series, 2017, 792, 012004.	0.4	0
141	Capping layer modulation of composition of GaAs/In0.15Ga0.75As/InXGa1-XAs/GaAs quantum wells and InAs QD's emission. AIP Conference Proceedings, 2018, , .	0.4	0
142	Photoluminescence emission at aging in ambient air of ZnO:Ag nanocrystals obtained by ultrasonic spray pyrolysis. AIP Conference Proceedings, 2018, , .	0.4	0
143	Evolution of Morphology, Structure and Emission in Si-rich HfO2:Nd films with Annealing Times. Journal of Physics: Conference Series, 2021, 1723, 012044.	0.4	0
144	Optical properties of InAs quantum dots embedded in InGaAs/AlGaAs/GaAs structures with different capping layers. Journal of Physics: Conference Series, 2021, 1723, 012037.	0.4	0