
Amy Simon-Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9403415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ exploration of the giant planets. Experimental Astronomy, 2022, 54, 975-1013.	3.7	5
2	lce giant system exploration within ESA's Voyage 2050. Experimental Astronomy, 2022, 54, 1015-1025.	3.7	4
3	Analysis of the long-term drift rates and oscillations of Jupiter's largest vortices. Icarus, 2022, 372, 114732.	2.5	2
4	Cross-Instrument Comparison of MapCam and OVIRS on OSIRIS-REx. Space Science Reviews, 2022, 218, 5.	8.1	2
5	Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sensing, 2022, 14, 1518.	4.0	5
6	VIPRE: A Tool Aiding the Design for Entry Probe Missions. Planetary Science Journal, 2022, 3, 98.	3.6	0
7	GRO 95577 (CR1) as a mineralogical analogue for asteroid (101955) Bennu. Icarus, 2022, 383, 115054.	2.5	6
8	Evolution of a dark vortex on Neptune with transient secondary features. Icarus, 2022, 387, 115123.	2.5	3
9	Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu. Science, 2022, 377, 285-291.	12.6	39
10	Photometry of asteroid (101955) Bennu with OVIRS on OSIRIS-REx. Icarus, 2021, 358, 114183.	2.5	25
11	Spectral analysis of craters on (101955) Bennu. Icarus, 2021, 357, 114252.	2.5	6
12	Exogenic basalt on asteroid (101955) Bennu. Nature Astronomy, 2021, 5, 31-38.	10.1	57
13	Fluctuations in Jupiter's equatorial stratospheric oscillation. Nature Astronomy, 2021, 5, 71-77.	10.1	17
14	Midsummer Atmospheric Changes in Saturn's Northern Hemisphere from the Hubble OPAL Program. Planetary Science Journal, 2021, 2, 47.	3.6	4
15	Modeling optical roughness and first-order scattering processes from OSIRIS-REx color images of the rough surface of asteroid (101955) Bennu. Icarus, 2021, 357, 114106.	2.5	8
16	The Role of Hydrated Minerals and Space Weathering Products in the Bluing of Carbonaceous Asteroids. Planetary Science Journal, 2021, 2, 68.	3.6	14
17	Interaction of Saturn's Hexagon With Convective Storms. Geophysical Research Letters, 2021, 48, e2021GL092461.	4.0	1
18	In search of Bennu analogs: Hapke modeling of meteorite mixtures. Astronomy and Astrophysics, 2021, 648, A88.	5.1	9

#	Article	IF	CITATIONS
19	Derivation of the final OSIRIS-REx OVIRS in-flight radiometric calibration. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7, .	1.8	5
20	Evidence for limited compositional and particle size variation on asteroid (101955) Bennu from thermal infrared spectroscopy. Astronomy and Astrophysics, 2021, 650, A120.	5.1	30
21	Spectrophotometric Modeling and Mapping of (101955) Bennu. Planetary Science Journal, 2021, 2, 117.	3.6	9
22	Spectral effects of varying texture and composition in twoâ€component "mudpie―simulations: Insights for asteroid (101955) Bennu. Meteoritics and Planetary Science, 2021, 56, 1173-1190.	1.6	5
23	Hydrogen abundance estimation and distribution on (101955) Bennu. Icarus, 2021, 363, 114427.	2.5	19
24	Lucy Mission to the Trojan Asteroids: Instrumentation and Encounter Concept of Operations. Planetary Science Journal, 2021, 2, 172.	3.6	21
25	Widely distributed exogenic materials of varying compositions and morphologies on asteroid (101955) Bennu. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2053-2070.	4.4	9
26	Composition of organics on asteroid (101955) Bennu. Astronomy and Astrophysics, 2021, 653, L1.	5.1	10
27	Neptune Odyssey: A Flagship Concept for the Exploration of the Neptune–Triton System. Planetary Science Journal, 2021, 2, 184.	3.6	11
28	Evolution of the Horizontal Winds in Jupiter's Great Red Spot From One Jovian Year of HST/WFC3 Maps. Geophysical Research Letters, 2021, 48, e2021GL093982.	4.0	10
29	Visible–near-infrared observations of organics and carbonates on (101955) Bennu: Classification method and search for surface context. Icarus, 2021, 368, 114579.	2.5	3
30	Saturn atmospheric dynamics one year after Cassini: Long-lived features and time variations in the drift of the Hexagon. Icarus, 2020, 336, 113429.	2.5	13
31	A complex storm system in Saturn's north polar atmosphere in 2018. Nature Astronomy, 2020, 4, 180-187.	10.1	13
32	Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu. Science, 2020, 370, .	12.6	56
33	Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history. Science, 2020, 370, .	12.6	71
34	Variations in color and reflectance on the surface of asteroid (101955) Bennu. Science, 2020, 370, .	12.6	84
35	Asteroid (101955) Bennu's weak boulders and thermally anomalous equator. Science Advances, 2020, 6,	10.3	83
36	Future Missions to the Giant Planets that Can Advance Atmospheric Science Objectives. Space Science Reviews, 2020, 216, 1.	8.1	3

#	Article	IF	CITATIONS
37	A Survey of Small‧cale Waves and Wave‣ike Phenomena in Jupiter's Atmosphere Detected by JunoCam. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006369.	3.6	7
38	High-resolution UV/Optical/IR Imaging of Jupiter in 2016–2019. Astrophysical Journal, Supplement Series, 2020, 247, 58.	7.7	25
39	Small Next-Generation Atmospheric Probe (SNAP) Concept to Enable Future Multi-Probe Missions: A Case Study for Uranus. Space Science Reviews, 2020, 216, 1.	8.1	7
40	OSIRIS-REx spectral analysis of (101955) Bennu by multivariate statistics. Astronomy and Astrophysics, 2020, 637, L4.	5.1	23
41	lce Ciant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planetary and Space Science, 2020, 191, 105030.	1.7	39
42	Advanced Net Flux Radiometer for the Ice Giants. Space Science Reviews, 2020, 216, 1.	8.1	5
43	A Review of the in Situ Probe Designs from Recent Ice Giant Mission Concept Studies. Space Science Reviews, 2020, 216, 1.	8.1	13
44	Visible–near infrared spectral indices for mapping mineralogy and chemistry with <scp>OSIRIS</scp> â€ <scp>RE</scp> x. Meteoritics and Planetary Science, 2020, 55, 744-765.	1.6	7
45	Phase reddening on asteroid Bennu from visible and near-infrared spectroscopy. Astronomy and Astrophysics, 2020, 644, A142.	5.1	22
46	Weak spectral features on (101995) Bennu from the OSIRIS-REx Visible and InfraRed Spectrometer. Astronomy and Astrophysics, 2020, 644, A148.	5.1	22
47	lce giant system exploration in the 2020s: an introduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190473.	3.4	13
48	The Effects of Waves on the Meridional Thermal Structure of Jupiter's Stratosphere. Planetary Science Journal, 2020, 1, 63.	3.6	5
49	OSIRISâ€REx Visible and Nearâ€Infrared Observations of the Moon. Geophysical Research Letters, 2019, 46, 6322-6326.	4.0	8
50	Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey. Planetary and Space Science, 2019, 177, 104680.	1.7	50
51	Constraints on Uranus's haze structure, formation and transport. Icarus, 2019, 333, 1-11.	2.5	16
52	The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nature Communications, 2019, 10, 1291.	12.8	99
53	The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nature Astronomy, 2019, 3, 352-361.	10.1	132
54	Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy, 2019, 3, 332-340.	10.1	251

#	Article	IF	CITATIONS
55	Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 2019, 3, 341-351.	10.1	188
56	Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience, 2019, 12, 242-246.	12.9	161
57	Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience, 2019, 12, 247-252.	12.9	179
58	The unexpected surface of asteroid (101955) Bennu. Nature, 2019, 568, 55-60.	27.8	364
59	Formation of a New Great Dark Spot on Neptune in 2018. Geophysical Research Letters, 2019, 46, 3108-3113.	4.0	18
60	Lifetimes and Occurrence Rates of Dark Vortices on Neptune from 25 Years of Hubble Space Telescope Images. Astronomical Journal, 2019, 157, 152.	4.7	12
61	Jupiter's Turbulent Power Spectra From Hubble Space Telescope. Journal of Geophysical Research E: Planets, 2019, 124, 1204-1225.	3.6	4
62	Landsat 9 Thermal Infrared Sensor 2 Spectral Response Test: Updates And Perspective. , 2019, , .		2
63	A New Dark Vortex on Neptune. Astronomical Journal, 2018, 155, 117.	4.7	22
64	A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere. Icarus, 2018, 302, 499-513.	2.5	14
65	The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu. Space Science Reviews, 2018, 214, 1.	8.1	84
66	Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter's Great Red Spot. Astronomical Journal, 2018, 155, 151.	4.7	28
67	Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 2018, 155, 12-40.	1.7	69
68	Landsat 9 Thermal Infrared Sensor 2 Architecture and Design. , 2018, , .		12
69	Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno. Astronomical Journal, 2018, 156, 246.	4.7	5
70	Landsat 9 Thermal Infrared Sensor 2 Characterization Plan Overview. , 2018, , .		17
71	Uranus's Northern Polar Cap in 2014. Geophysical Research Letters, 2018, 45, 5329-5335.	4.0	10
72	Less absorbed solar energy and more internal heat for Jupiter. Nature Communications, 2018, 9, 3709.	12.8	50

#	Article	IF	CITATIONS
73	A New, Long-lived, Jupiter Mesoscale Wave Observed at Visible Wavelengths. Astronomical Journal, 2018, 156, 79.	4.7	14
74	Jupiter's Mesoscale Waves Observed at 5 μm by Ground-based Observations and Juno JIRAM. Astronomical Journal, 2018, 156, 67.	4.7	17
75	In-Flight Calibration and Performance of the OSIRIS-REx Visible and IR Spectrometer (OVIRS). Remote Sensing, 2018, 10, 1486.	4.0	23
76	SPRITE: A Saturn probe new frontiers mission. , 2018, , .		4
77	Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations. Planetary and Space Science, 2018, 155, 2-11.	1.7	13
78	Solar system science with the Wide-Field Infrared Survey Telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4, 1.	1.8	5
79	The Robo-AO-2 facility for rapid visible/near-infrared AO imaging and the demonstration of hybrid techniques. , 2018, , .		4
80	Landsat 9 Thermal Infrared Sensor 2 pre-launch characterization: initial imaging and spectral performance results. , 2018, , .		0
81	Atmospheric waves and dynamics beneath Jupiter's clouds from radio wavelength observations. Icarus, 2017, 292, 168-181.	2.5	13
82	Changes in Jupiter's Zonal Wind Profile preceding and during the Juno mission. Icarus, 2017, 296, 163-178.	2.5	70
83	Neptune long-lived atmospheric features in 2013–2015 from small (28-cm) to large (10-m) telescopes. Icarus, 2017, 295, 89-109.	2.5	21
84	Jupiter's North Equatorial Belt expansion and thermal wave activity ahead of Juno's arrival. Geophysical Research Letters, 2017, 44, 7140-7148.	4.0	21
85	HST/WFC3 observations of Uranus' 2014 storm clouds and comparison with VLT/SINFONI and IRTF/Spex observations. Icarus, 2017, 288, 99-119.	2.5	21
86	Time-series Analysis of Broadband Photometry of Neptune from K2. Astronomical Journal, 2017, 153, 149.	4.7	9
87	OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Science Reviews, 2017, 212, 925-984.	8.1	426
88	New Observations and Modeling of Jupiter's Quasiâ€Quadrennial Oscillation. Journal of Geophysical Research E: Planets, 2017, 122, 2719-2744.	3.6	30
89	SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE. Astronomical Journal, 2016, 152, 142.	4.7	12
90	Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot. Icarus, 2016, 274, 106-115.	2.5	35

#	Article	IF	CITATIONS
91	Vortices in Saturn's Northern Hemisphere (2008–2015) observed by Cassini ISS. Journal of Geophysical Research E: Planets, 2016, 121, 1814-1826.	3.6	9
92	An enduring rapidly moving storm as a guide to Saturn's Equatorial jet's complex structure. Nature Communications, 2016, 7, 13262.	12.8	21
93	A DISTANT MIRROR: SOLAR OSCILLATIONS OBSERVED ON NEPTUNE BY THE KEPLER K2 MISSION. Astrophysical Journal Letters, 2016, 833, L13.	8.3	8
94	NEPTUNE'S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES. Astrophysical Journal, 2016, 817, 162.	4.5	39
95	The spectrum of Jupiter's Great Red Spot: The case for ammonium hydrosulfide (NH4SH). Icarus, 2016, 271, 265-268.	2.5	22
96	MEANDERING SHALLOW ATMOSPHERIC JET AS A MODEL OF SATURN'S NORTH-POLAR HEXAGON. Astrophysical Journal Letters, 2015, 806, L18.	8.3	24
97	OBSERVATIONS AND NUMERICAL MODELING OF THE JOVIAN RIBBON. Astrophysical Journal Letters, 2015, 810, L10.	8.3	7
98	Spectral comparison and stability of red regions on Jupiter. Journal of Geophysical Research E: Planets, 2015, 120, 483-494.	3.6	6
99	Smallâ€scale waves on Jupiter: A reanalysis of New Horizons, Voyager, and Galileo data. Geophysical Research Letters, 2015, 42, 2612-2618.	4.0	16
100	FIRST RESULTS FROM THE HUBBLE OPAL PROGRAM: JUPITER IN 2015. Astrophysical Journal, 2015, 812, 55.	4.5	88
101	Giant-planet chemistry: Ammonium hydrosulfide (NH4SH), its IR spectra and thermal and radiolytic stabilities. Icarus, 2015, 258, 181-191.	2.5	15
102	The OSIRISâ€REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics and Planetary Science, 2015, 50, 834-849.	1.6	168
103	Stratospheric benzene and hydrocarbon aerosols detected in Saturn's auroral regions. Astronomy and Astrophysics, 2015, 580, A89.	5.1	19
104	DRAMATIC CHANGE IN JUPITER'S GREAT RED SPOT FROM SPACECRAFT OBSERVATIONS. Astrophysical Journal Letters, 2014, 797, L31.	8.3	20
105	Scientific rationale for Saturn× ³ s in situ exploration. Planetary and Space Science, 2014, 104, 29-47.	1.7	49
106	Meteorology of Jupiter's equatorial hot spots and plumes from Cassini. Icarus, 2013, 223, 832-843.	2.5	27
107	Exploring Planetary Atmospheres. Eos, 2013, 94, 425-426.	0.1	Ο
108	Strong Temporal Variation Over One Saturnian Year: From Voyager to Cassini. Scientific Reports, 2013, 3, 2410.	3.3	11

#	Article	IF	CITATIONS
109	Colors of Jupiter's large anticyclones and the interaction of a Tropical Red Oval with the Great Red Spot in 2008. Journal of Geophysical Research E: Planets, 2013, 118, 2537-2557.	3.6	15
110	ELUSIVE ETHYLENE DETECTED IN SATURN'S NORTHERN STORM REGION. Astrophysical Journal, 2012, 760, 24.	4.5	31
111	The origin and evolution of Saturn's 2011–2012 stratospheric vortex. Icarus, 2012, 221, 560-586.	2.5	63
112	Emitted power of Jupiter based on Cassini CIRS and VIMS observations. Journal of Geophysical Research, 2012, 117, .	3.3	17
113	Vertical cloud structure of the 2009 Jupiter impact based on HST/WFC3 observations. Icarus, 2012, 221, 1061-1078.	2.5	8
114	Longitudinal variation and waves in Jupiter's south equatorial wind jet. Icarus, 2012, 218, 817-830.	2.5	28
115	Evolution of the equatorial oscillation in Saturn's stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophysical Research Letters, 2011, 38, .	4.0	41
116	The global energy balance of Titan. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	17
117	Long-term evolution of the aerosol debris cloud produced by the 2009 impact on Jupiter. Icarus, 2011, 214, 462-476.	2.5	13
118	Jovian chromophore characteristics from multispectral HST images. Icarus, 2011, 215, 552-583.	2.5	16
119	The atmospheric influence, size and possible asteroidal nature of the July 2009 Jupiter impactor. Icarus, 2011, 211, 587-602.	2.5	29
120	Jovian temperature and cloud variability during the 2009–2010 fade of the South Equatorial Belt. Icarus, 2011, 213, 564-580.	2.5	34
121	Thermal Structure and Dynamics of Saturn's Northern Springtime Disturbance. Science, 2011, 332, 1413-1417.	12.6	75
122	Equatorial winds on Saturn and the stratosphericÂoscillation. Nature Geoscience, 2011, 4, 750-752.	12.9	16
123	JUPITER AFTER THE 2009 IMPACT: <i>HUBBLE SPACE TELESCOPE</i> IMAGING OF THE IMPACT-GENERATED DEBRIS AND ITS TEMPORAL EVOLUTION. Astrophysical Journal Letters, 2010, 715, L150-L154.	8.3	36
124	FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER. Astrophysical Journal Letters, 2010, 721, L129-L133.	8.3	28
125	Seasonal change on Saturn from Cassini/CIRS observations, 2004–2009. Icarus, 2010, 208, 337-352.	2.5	63
126	Thermal structure and composition of Jupiter's Great Red Spot from high-resolution thermal imaging. Icarus, 2010, 208, 306-328.	2.5	50

#	Article	IF	CITATIONS
127	Meridional distribution of CH3C2H and C4H2 in Saturn's stratosphere from CIRS/Cassini limb and nadir observations. Icarus, 2010, 209, 682-695.	2.5	35
128	On the long-term variability of Jupiter's winds and brightness as observed from Hubble. Icarus, 2010, 210, 258-269.	2.5	47
129	Analysis of Jupiter's Oval BA: A streamlined approach. Icarus, 2010, 210, 202-210.	2.5	7
130	Saturn's emitted power. Journal of Geophysical Research, 2010, 115, .	3.3	33
131	THE IMPACT OF A LARGE OBJECT ON JUPITER IN 2009 JULY. Astrophysical Journal Letters, 2010, 715, L155-L159.	8.3	47
132	Saturn's latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus, 2009, 202, 249-259.	2.5	29
133	Saturn's south polar vortex compared to other large vortices in the Solar System. Icarus, 2009, 202, 240-248.	2.5	50
134	Vertical and meridional distribution of ethane, acetylene and propane in Saturn's stratosphere from CIRS/Cassini limb observations. Icarus, 2009, 203, 214-232.	2.5	78
135	Mapping potential vorticity dynamics on saturn: Zonal mean circulation from Cassini and Voyager data. Planetary and Space Science, 2009, 57, 1682-1698.	1.7	68
136	Thermal Infrared Spectroscopy of Saturn and Titan from Cassini. , 2009, , .		0
137	Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature, 2008, 451, 437-440.	27.8	82
138	An equatorial oscillation in Saturn's middle atmosphere. Nature, 2008, 453, 200-202.	27.8	88
139	Strong jet and a new thermal wave in Saturn's equatorial stratosphere. Geophysical Research Letters, 2008, 35, .	4.0	22
140	Dynamics of Saturn's South Polar Vortex. Science, 2008, 319, 1801-1801.	12.6	50
141	Temperature and Composition of Saturn's Polar Hot Spots and Hexagon. Science, 2008, 319, 79-81.	12.6	103
142	Mission Concepts for Studying Enceladus. AlP Conference Proceedings, 2008, , .	0.4	2
143	CHANGING CHARACTERISTICS OF JUPITER'S LITTLE RED SPOT. Astronomical Journal, 2008, 135, 2446-2452.	4.7	33
144	Polar Lightning and Decadal-Scale Cloud Variability on Jupiter. Science, 2007, 318, 226-229.	12.6	52

#	Article	IF	CITATIONS
145	Jupiter Cloud Composition, Stratification, Convection, and Wave Motion: A View from New Horizons. Science, 2007, 318, 223-225.	12.6	48
146	Wind variations in Jupiter's equatorial atmosphere: A QQO counterpart?. Icarus, 2007, 186, 192-203.	2.5	27
147	Meridional variations of C2H2 and C2H6 in Jupiter's atmosphere from Cassini CIRS infrared spectra. Icarus, 2007, 188, 47-71.	2.5	72
148	Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus, 2007, 190, 556-572.	2.5	30
149	Infrared Observations of Saturn and Titan from Cassini. , 2007, , .		0
150	Vertical wind shear on Jupiter from Cassini images. Journal of Geophysical Research, 2006, 111, .	3.3	28
151	Jupiter's atmospheric temperatures: From Voyager IRIS to Cassini CIRS. Icarus, 2006, 180, 98-112.	2.5	104
152	Waves in Jupiter's atmosphere observed by the Cassini ISS and CIRS instruments. Icarus, 2006, 185, 416-429.	2.5	31
153	Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1577-1603.	2.7	63
154	Jupiter's White Oval turns red. Icarus, 2006, 185, 558-562.	2.5	27
155	Vertical structure modeling of Saturn's equatorial region using high spectral resolution imaging. Icarus, 2005, 175, 464-489.	2.5	33
156	Temperatures, Winds, and Composition in the Saturnian System. Science, 2005, 307, 1247-1251.	12.6	184
157	Titan's Atmospheric Temperatures, Winds, and Composition. Science, 2005, 308, 975-978.	12.6	318
158	CIRS: The Composite Infrared Spectrometer on Cassini. , 2005, , .		0
159	Jupiter's Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment. Science, 2004, 305, 1582-1586.	12.6	63
160	An intense stratospheric jet on Jupiter. Nature, 2004, 427, 132-135.	27.8	103
161	Exploring The Saturn System In The Thermal Infrared: The Composite Infrared Spectrometer. Space Science Reviews, 2004, 115, 169-297.	8.1	275
162	Retrievals of jovian tropospheric phosphine from Cassini/CIRS. Icarus, 2004, 172, 37-49.	2.5	68

#	Article	IF	CITATIONS
163	Operations and calibration of the solid-state imaging system during the Galileo extended mission at Jupiter. Optical Engineering, 2003, 42, 494.	1.0	8
164	New Observational Results Concerning Jupiter's Great Red Spot. Icarus, 2002, 158, 249-266.	2.5	63
165	Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models. Journal of Geophysical Research, 2001, 106, 33175-33199.	3.3	56
166	Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission. Journal of Geophysical Research, 2001, 106, 33025-33052.	3.3	118
167	An HST Study of Jovian Chromophores. Icarus, 2001, 149, 94-106.	2.5	23
168	Color and the Vertical Structure in Jupiter's Belts, Zones, and Weather Systems. Icarus, 2001, 154, 459-474.	2.5	67
169	A Detection of Water Ice on Jupiter with Voyager IRIS. Icarus, 2000, 145, 454-461.	2.5	39
170	Observation of moist convection in Jupiter's atmosphere. Nature, 2000, 403, 628-630.	27.8	182
171	The Structure and Temporal Stability of Jupiter's Zonal Winds: A Study of the North Tropical Region. Icarus, 1999, 141, 29-39.	2.5	46
172	Ammonia and Eddy Mixing Variations in the Upper Troposphere of Jupiter from HST Faint Object Spectrograph Observations. Icarus, 1999, 142, 342-356.	2.5	28
173	On the Latitude Variation of Ammonia, Acetylene, and Phosphine Altitude Profiles on Jupiter from HST Faint Object Spectrograph Observations. Icarus, 1998, 133, 192-209.	2.5	35
174	Global Context of the Galileo-E6 Observations of Jupiter's White Ovals. Icarus, 1998, 135, 220-229.	2.5	30
175	Absolute Reflectivity Spectra of Jupiter: 0.25–3.5 Micrometers. Icarus, 1996, 121, 351-360.	2.5	25
176	Comparison of Galileo-Probe and Earth-Based Translation Rates of Jupiter's Equatorial Clouds. Science, 1996, 272, 841-841.	12.6	22
177	Jovian Tropospheric Features—Wind Field, Morphology, and Motion of Long-Lived Systems. Icarus, 1996, 121, 319-330.	2.5	24
178	Hubble Space Telescope Visible Imaging of Jupiter During the Comet Crash. Highlights of Astronomy, 1995, 10, 624-626.	0.0	0
179	HST imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy 9. Science, 1995, 267, 1288-1296.	12.6	206
180	On the sulfate, chloride and sodium concentration in maritime air around the Asian continent. Tellus, 1981, 33, 382-386.	0.8	33