
Jonathan K Bartley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9402893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications, 2022, 164, 106430.	3.3	5
2	Iron molybdate catalysts synthesised <i>via</i> dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science and Technology, 2022, 12, 4552-4560.	4.1	0
3	A Career in Catalysis: Graham J. Hutchings. ACS Catalysis, 2021, 11, 5916-5933.	11.2	2
4	Triethylamine–Water as a Switchable Solvent for the Synthesis of Cu/ZnO Catalysts for Carbon Dioxide Hydrogenation to Methanol. Topics in Catalysis, 2021, 64, 984-991.	2.8	3
5	The hydrogenation of levulinic acid to γ-valerolactone over Cu–ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry, 2019, 36, 15-24.	12.9	30
6	The Effects of Dopants on the Cu–ZrO ₂ Catalyzed Hydrogenation of Levulinic Acid. Journal of Physical Chemistry C, 2019, 123, 7879-7888.	3.1	21
7	<i>x</i> Ni– <i>y</i> Cu–ZrO ₂ catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Journal of Lithic Studies, 2018, 4, 12-23.	0.5	9
8	Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. Catalysis Today, 2018, 317, 12-20.	4.4	31
9	Supercritical Antisolvent Precipitation of Amorphous Copper–Zinc Georgeite and Acetate Precursors for the Preparation of Ambientâ€Pressure Waterâ€Gasâ€Shift Copper/Zinc Oxide Catalysts. ChemCatChem, 2017, 9, 1621-1631.	3.7	20
10	A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science, 2017, 8, 2436-2447.	7.4	32
11	Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis, 2017, 354, 236-249.	6.2	22
12	Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 2017, 19, 225-236.	9.0	68
13	The effect of sodium species on methanol synthesis and water–gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions, 2017, 197, 287-307.	3.2	33
14	Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today, 2016, 272, 74-79.	4.4	15
15	The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions, 2016, 188, 427-450.	3.2	41
16	The conversion of levulinic acid into γ-valerolactone using Cu–ZrO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 6022-6030.	4.1	40
17	The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science, 2016, 648, 163-169.	1.9	36
18	Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature, 2016, 531, 83-87.	27.8	128

#	Article	IF	CITATIONS
19	Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today, 2016, 275, 35-39.	4.4	29
20	Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science and Technology, 2016, 6, 2910-2917.	4.1	9
21	Methyl Formate Formation from Methanol Oxidation Using Supported Gold–Palladium Nanoparticles. ACS Catalysis, 2015, 5, 637-644.	11.2	78
22	Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and photocatalysis. Applied Catalysis A: General, 2015, 504, 62-73.	4.3	29
23	Au–Pd Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst. ACS Catalysis, 2015, 5, 3575-3587.	11.2	103
24	Oxidation of Benzyl Alcohol and Carbon Monoxide Using Gold Nanoparticles Supported on MnO ₂ Nanowire Microspheres. Chemistry - A European Journal, 2014, 20, 1701-1710.	3.3	40
25	Novel cobalt zinc oxide Fischer–Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science and Technology, 2014, 4, 1970-1978.	4.1	29
26	Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media. Geothermics, 2014, 51, 9-30.	3.4	31
27	Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General, 2014, 485, 51-57.	4.3	15
28	Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental, 2013, 140-141, 671-679.	20.2	50
29	Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science and Technology, 2013, 3, 1558.	4.1	13
30	Preparation of Fischer–Tropsch Supported Cobalt Catalysts Using a New Gas Anti-Solvent Process. ACS Catalysis, 2013, 3, 764-772.	11.2	18
31	Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry, 2012, 4, 134-139.	13.6	41
32	Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis, 2012, 296, 55-64.	6.2	49
33	Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters, 2012, 142, 1049-1056.	2.6	61
34	Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental, 2012, 128, 31-38.	20.2	97
35	Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials, 2012, 164, 207-213.	4.4	57
36	Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science and Technology, 2012, 2, 105-112.	4.1	174

#	Article	IF	CITATIONS
37	Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science, 2012, 3, 2958.	7.4	14
38	An Attempt at Enhancing the Regioselective Oxidation of Decane Using Catalysis with Reverse Micelles. Catalysis Letters, 2012, 142, 302-307.	2.6	2
39	Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ï‰-alkanediols. Catalysis Today, 2012, 183, 52-57.	4.4	10
40	Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem, 2012, 5, 125-131.	6.8	56
41	Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry, 2011, 21, 16136.	6.7	28
42	Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science and Technology, 2011, 1, 740.	4.1	50
43	Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry, 2011, 20, 635-638.	1.8	12
44	The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis, 2011, 281, 279-289.	6.2	58
45	Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis, 2011, 283, 161-167.	6.2	21
46	CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics, 2011, 13, 2528-2538.	2.8	28
47	Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters, 2011, 141, 400-407.	2.6	10
48	Vanadium Phosphate Materials as Selective Oxidation Catalysts. Advances in Catalysis, 2011, , 189-247.	0.2	29
49	Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem, 2010, 2, 443-452.	3.7	8
50	Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters, 2010, 138, 1-7.	2.6	28
51	Recovery and Reuse of Nanoparticles by Tuning Solvent Quality. ChemSusChem, 2010, 3, 339-341.	6.8	8
52	Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science, 2010, 350, 443-446.	9.4	14
53	Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General, 2010, 376, 47-55.	4.3	21
54	The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today, 2010, 157, 211-216.	4.4	11

#	Article	IF	CITATIONS
55	The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts forn-Butane Oxidation. Petroleum Science and Technology, 2010, 28, 997-1012.	1.5	9
56	Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcohol reduction of VOPO4·2H2O. Journal of Materials Chemistry, 2010, 20, 5310.	6.7	10
57	Evaluation and Structural Characterization of DuPont V-P-O/SiO2 Catalysts. Microscopy and Microanalysis, 2009, 15, 1412-1413.	0.4	Ο
58	Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters, 2009, 130, 327-334.	2.6	30
59	New Nanocrystalline Cu/MnO _{<i>x</i>} Catalysts Prepared from Supercritical Antisolvent Precipitation. ChemCatChem, 2009, 1, 247-251.	3.7	44
60	Ceria prepared using supercritical antisolvent precipitation: a green support for gold–palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry, 2009, 19, 8619.	6.7	88
61	Structural Characterization of Vanadium Phosphate Catalysts Prepared using a Di-block Copolymer Template. Microscopy and Microanalysis, 2009, 15, 1438-1439.	0.4	3
62	On the synthesis of β-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters, 2008, 49, 2454-2456.	1.4	30
63	Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis, 2007, 249, 208-219.	6.2	82
64	Gallium-doped VPO catalysts for the oxidation of n-butane to maleic anhydride. Journal of Materials Chemistry, 2006, 16, 4348.	6.7	15
65	Effects of mechanochemical treatment to the vanadium phosphate catalysts derived from VOPO4A·2H2O. Journal of Molecular Catalysis A, 2006, 260, 24-31.	4.8	40
66	Oxidation of Butane to Maleic Anhydride using Vanadium Phosphate Catalysts: Comparison of Operation in Aerobic and Anaerobic Conditions using a Gas-gas Periodic Flow Reactor. Catalysis Letters, 2006, 106, 127-131.	2.6	2
67	Synthesis of Vanadium Phosphate Catalysts by Hydrothermal Method for Selective Oxidation of n-butane to Maleic Anhydride. Catalysis Letters, 2006, 106, 177-181.	2.6	14
68	The crystal structure of ε-VOPO4. Solid State Sciences, 2006, 8, 807-812.	3.2	32
69	Preparation of Tio2 Using Supercritical CO2 Antisolvent Precipitation (SAS): A Support for High Activity Gold Catalysts. Studies in Surface Science and Catalysis, 2006, 162, 219-226.	1.5	13
70	Chemically Induced Fast Solid-State Transitions of Â-VOPO4 in Vanadium Phosphate Catalysts. Science, 2006, 313, 1270-1273.	12.6	79
71	XPS investigations of VPO catalysts under reaction conditions. Surface Science, 2005, 575, 181-188.	1.9	57
72	Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis, 2005, 236, 282-291.	6.2	23

#	Article	IF	CITATIONS
73	Synthesis and Characterization of Vanadyl Hydrogen Phosphite Hydrate ChemInform, 2005, 36, no.	0.0	0
74	Preparation of vanadium phosphate catalyst precursors using a high pressure method. Catalysis Today, 2005, 99, 131-136.	4.4	8
75	High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Michael Addition and Knoevenagel Condensation Reactions. Synthesis, 2005, 2005, 3468-3476.	2.3	11
76	The hydration and transformation of vanadyl pyrophosphate. Journal of Materials Chemistry, 2005, 15, 4147.	6.7	8
77	Unexpected enhanced activity catalysts for butane oxidation using mixtures derived from VOHPO4·0.5H2O and AlPO4. Journal of Materials Chemistry, 2005, 15, 4295.	6.7	2
78	Reaction of vanadium phosphates with alcohols at elevated temperature and pressure. Journal of Materials Chemistry, 2005, 15, 3214.	6.7	10
79	Synthesis and Characterization of Vanadyl Hydrogen Phosphite Hydrate. Chemistry of Materials, 2005, 17, 2757-2764.	6.7	16
80	Preparation of vanadium phosphate catalysts from VOPO4·2H2O: effect of VOPO4·2H2O preparation on catalyst performance. Journal of Molecular Catalysis A, 2004, 220, 113-119.	4.8	22
81	Promotion of vanadium phosphate catalysts using gallium compounds: effect of low Ga/V molar ratios. Journal of Molecular Catalysis A, 2004, 220, 85-92.	4.8	11
82	High Temperature Preparation of Vanadium Phosphate Catalysts Using Water as Solvent ChemInform, 2003, 34, no.	0.0	0
83	Preparation of vanadium phosphate catalysts using water as solvent. Catalysis Today, 2003, 81, 197-203.	4.4	17
84	High temperature preparation of vanadium phosphate catalysts using water as solvent. Physical Chemistry Chemical Physics, 2003, 5, 3525-3533.	2.8	25
85	Preparation of high surface area vanadium phosphate catalysts using water as solvent. New Journal of Chemistry, 2002, 26, 1613-1618.	2.8	9
86	Effects of cobalt additive on amorphous vanadium phosphate catalysts prepared using precipitation with supercritical CO2as an antisolvent. New Journal of Chemistry, 2002, 26, 1811-1816.	2.8	17
87	Amorphous Vanadium Phosphate Catalysts Prepared Using Precipitation with Supercritical CO2 as an Antisolvent. Journal of Catalysis, 2002, 208, 197-210.	6.2	87
88	In situ laser Raman spectroscopy studies of the transformation of VOHPO4·0.5H2O and (VO)2P2O7. Physical Chemistry Chemical Physics, 2001, 3, 4122-4128.	2.8	11
89	Structure–activity relationships for Co- and Fe-promoted vanadium phosphorus oxide catalysts. New Journal of Chemistry, 2001, 25, 125-130.	2.8	29
90	Structural transformation sequence occurring during the activation under n-butane–air of a cobalt-doped vanadium phosphate hemihydrate precursor for mild oxidation to maleic anhydride. Physical Chemistry Chemical Physics, 2001, 3, 2143-2147.	2.8	13

#	Article	IF	CITATIONS
91	Comparison of vanadium phosphate catalysts derived from VOPO4Ã,·2H2O prepared from H3PO4 and H4P2O7 Electronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b105304n/. Physical Chemistry Chemical Physics, 2001, 3, 4606-4613.	2.8	10
92	Amorphous Vanadium Phosphate Catalysts from Supercritical Antisolvent Precipitation. Journal of Catalysis, 2001, 197, 232-235.	6.2	53
93	Vanadium(V) phosphate prepared using solvent-free method. Catalysis Letters, 2001, 72, 99-105.	2.6	19
94	The Unexpected Role of Aldehydes and Ketones in the Standard Preparation Method for Vanadium Phosphate Catalysts. Journal of Catalysis, 2000, 195, 423-427.	6.2	14
95	n-Butane oxidation using VO(H2PO4)2 as catalyst derived from an aldehyde/ketone based preparation method. Physical Chemistry Chemical Physics, 2000, 2, 4999-5006.	2.8	16
96	Comment on "Unit Cell Information for Î′- and γ-VOPO4―by Z. G. Li, R. L. Harlow, N. Herron III, H. S. Horowitz, and E. M. McCarron. Journal of Catalysis, 1997, 171, 509-511.	6.2	4
97	Vanadium Phosphate Catalysts. , 0, , 499-537.		4