
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9402557/publications.pdf Version: 2024-02-01

ADNAN MEMIC

#	Article	IF	CITATIONS
1	Electroconductive biomaterials for cardiac tissue engineering. Acta Biomaterialia, 2022, 139, 118-140.	8.3	61
2	(Bio)manufactured Solutions for Treatment of Bone Defects with an Emphasis on USâ€FDA Regulatory Science Perspective. Advanced NanoBiomed Research, 2022, 2, .	3.6	12
3	Investigation of the tris(8-hydroxyquinoline) aluminum as a promising fluorescent optical material for in vitro bioimaging. Optical Materials, 2022, 127, 112260.	3.6	5
4	In situ bioprinting: intraoperative implementation of regenerative medicine. Trends in Biotechnology, 2022, 40, 1229-1247.	9.3	30
5	Development of Nanocoated Filaments for 3D Fused Deposition Modeling of Antibacterial and Antioxidant Materials. Polymers, 2022, 14, 2645.	4.5	13
6	Size-controlled, single-crystal CuO nanosheets and the resulting polyethylene–carbon nanotube nanocomposite as antimicrobial materials. Polymer Bulletin, 2021, 78, 261-281.	3.3	9
7	Tunable fabrication of rice-like nanostructures aggregated into flowers of Alq3 with negligible photo-degradation for potential biomedical applications. Materials Chemistry and Physics, 2021, 259, 124080.	4.0	14
8	Reevolution of Tissue Regeneration: From Recent Advances in Adipose Stem Cells to Novel Therapeutic Approaches. Stem Cells International, 2021, 2021, 1-3.	2.5	5
9	Neuroscience and Neuroimmunology Solutions for Osteoarthritis Pain: Biological Drugs, Growth Factors, Peptides and Monoclonal Antibodies Targeting Peripheral Nerves. NeuroSci, 2021, 2, 45-58.	1.2	0
10	3Dâ€Printed Hydrogelâ€Filled Microneedle Arrays. Advanced Healthcare Materials, 2021, 10, e2001922.	7.6	32
11	In situ printing of scaffolds for reconstruction of bone defects. Acta Biomaterialia, 2021, 127, 313-326.	8.3	41
12	Oxygenâ€Generating Cryogels Restore T Cell Mediated Cytotoxicity in Hypoxic Tumors. Advanced Functional Materials, 2021, 31, 2102234.	14.9	17
13	Injectable Lignin- <i>co</i> -Gelatin Cryogels with Antioxidant and Antibacterial Properties for Biomedical Applications. Biomacromolecules, 2021, 22, 4110-4121.	5.4	47
14	MicroRNAs and Regulation of Autophagy in Chondrocytes. Methods in Molecular Biology, 2021, 2245, 179-194.	0.9	3
15	Injectable Cryogels for Biomedical Applications. Trends in Biotechnology, 2020, 38, 418-431.	9.3	135
16	Cell and Gene Therapy for Spine Regeneration. Neurosurgery Clinics of North America, 2020, 31, 131-139.	1.7	8
17	3D Printing of Metal/Metal Oxide Incorporated Thermoplastic Nanocomposites With Antimicrobial Properties. Frontiers in Bioengineering and Biotechnology, 2020, 8, 568186.	4.1	26
18	Needle-injectable microcomposite cryogel scaffolds with antimicrobial properties. Scientific Reports, 2020, 10, 18370.	3.3	21

#	Article	IF	CITATIONS
19	Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Frontiers in Chemistry, 2020, 8, 598160.	3.6	40
20	Sustainable drug release from polycaprolactone coated chitin-lignin gel fibrous scaffolds. Scientific Reports, 2020, 10, 20428.	3.3	37
21	Over-Production of Therapeutic Growth Factors for Articular Cartilage Regeneration by Protein Production Platforms and Protein Packaging Cell Lines. Biology, 2020, 9, 330.	2.8	4
22	Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications. Polymers, 2020, 12, 1233.	4.5	45
23	Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Advanced Healthcare Materials, 2020, 9, e1901058.	7.6	261
24	Effect of Polymer Concentration on Autoclaved Cryogel Properties. Macromolecular Materials and Engineering, 2020, 305, 1900824.	3.6	23
25	Process–Structure–Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds. Tissue Engineering - Part A, 2020, 26, 279-291.	3.1	50
26	Non-viral Gene Therapy for Osteoarthritis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 618399.	4.1	23
27	Autoclavable and Injectable Cryogels for Biomedical Applications. Advanced Healthcare Materials, 2019, 8, e1900679.	7.6	39
28	Latest Progress in Electrospun Nanofibers for Wound Healing Applications. ACS Applied Bio Materials, 2019, 2, 952-969.	4.6	258
29	Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. Journal of Polymer Research, 2019, 26, 1.	2.4	54
30	Nanocomposites of CuO/SWCNT: Promising thermoelectric materials for mid-temperature thermoelectric generators. Journal of the European Ceramic Society, 2019, 39, 3307-3314.	5.7	27
31	Size controlled, antimicrobial ZnO nanostructures produced by the microwave assisted route. Materials Science and Engineering C, 2019, 99, 1164-1173.	7.3	41
32	Latest Advances in Cryogel Technology for Biomedical Applications. Advanced Therapeutics, 2019, 2, 1800114.	3.2	187
33	Future Cell and Gene Therapy for Osteoarthritis (OA): Potential for Using Mammalian Protein Production Platforms, Irradiated and Transfected Protein Packaging Cell Lines for Over-Production of Therapeutic Proteins and Growth Factors. Advances in Experimental Medicine and Biology, 2019, 1247, 17-31.	1.6	10
34	Graphene and Graphene-Based Materials in Biomedical Applications. Current Medicinal Chemistry, 2019, 26, 6834-6850.	2.4	22
35	Hybrid Paper–Plastic Microchip for Flexible and Highâ€Performance Pointâ€of are Diagnostics. Advanced Functional Materials, 2018, 28, 1707161.	14.9	39
36	Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 2018, 127, 138-166.	13.7	512

#	Article	IF	CITATIONS
37	Encapsulation of 5-Flurouracil into PLGA Nanofibers and Enhanced Anticancer Effect in Combination with Ajwa-Dates-Extract (<i>Phoenix dactylifera L</i> .). Journal of Biomedical Nanotechnology, 2018, 14, 553-563.	1.1	15
38	Nanoparticles in tissue engineering: applications, challenges and prospects. International Journal of Nanomedicine, 2018, Volume 13, 5637-5655.	6.7	287
39	Study of Electrospinning Parameters and Collection Methods on Size Distribution and Orientation of PLA/PBS Hybrid Fiber Using Digital Image Processing. Journal of Nanoscience and Nanotechnology, 2018, 18, 8240-8251.	0.9	16
40	The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds. Materials, 2018, 11, 451.	2.9	23
41	A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. Advances in Experimental Medicine and Biology, 2018, 1089, 23-36.	1.6	45
42	Injectable Hyaluronic Acid-co-Gelatin Cryogels for Tissue-Engineering Applications. Materials, 2018, 11, 1374.	2.9	79
43	Advances in <i>Candida</i> detection platforms for clinical and point-of-care applications. Critical Reviews in Biotechnology, 2017, 37, 441-458.	9.0	46
44	Fabrication and characterization of poly (aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 121-130.	4.7	37
45	Bioprinting technologies for disease modeling. Biotechnology Letters, 2017, 39, 1279-1290.	2.2	53
46	The role of metabolism in the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 2017, 13, 302-311.	8.0	438
47	Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis. Biosensors and Bioelectronics, 2017, 91, 32-39.	10.1	15
48	Size controlled ultrafine CeO2 nanoparticles produced by the microwave assisted route and their antimicrobial activity. Journal of Materials Science: Materials in Medicine, 2017, 28, 177.	3.6	14
49	Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. Scientific Reports, 2017, 7, 9220.	3.3	90
50	Rapid fabrication of highly porous and biocompatible composite textile tubular scaffold for vascular tissue engineering. European Polymer Journal, 2017, 96, 27-43.	5.4	22
51	Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties. RSC Advances, 2017, 7, 34331-34338.	3.6	29
52	Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. Nanoscale, 2017, 9, 1852-1861.	5.6	58
53	The Potency of Induced Pluripotent Stem Cells in Cartilage Regeneration and Osteoarthritis Treatment. Advances in Experimental Medicine and Biology, 2017, 1079, 55-68.	1.6	21
54	Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties. Nanomaterials, 2017, 7, 63.	4.1	23

#	Article	IF	CITATIONS
55	Pathogenesis of Thromboembolism and Endovascular Management. Thrombosis, 2017, 2017, 1-13.	1.4	26
56	Nanoâ€Enabled Approaches for Stem Cellâ€Based Cardiac Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1533-1553.	7.6	50
57	Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. Journal of Medicinal Chemistry, 2016, 59, 8149-8167.	6.4	306
58	Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of Materials Chemistry B, 2016, 4, 3544-3554.	5.8	149
59	Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, 11, 41-60.	11.9	472
60	Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. Biomedical Materials (Bristol), 2016, 11, 014104.	3.3	82
61	Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods, 2016, 99, 69-80.	3.8	366
62	Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 2016, 99, 62-68.	3.8	189
63	Formation of Carbon Nanotubes from Carbon-Rich Fly Ash: Growth Parameters and Mechanism. Materials and Manufacturing Processes, 2016, 31, 146-156.	4.7	38
64	Carbon rich fly ash and their nanostructures. Carbon Letters, 2016, 19, 23-31.	5.9	20
65	Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators. Advanced Functional Materials, 2015, 25, 4486-4495.	14.9	146
66	A Highly Elastic and Rapidly Crosslinkable Elastin‣ike Polypeptideâ€Based Hydrogel for Biomedical Applications. Advanced Functional Materials, 2015, 25, 4814-4826.	14.9	201
67	Osteoarthritis in the XXIst Century: Risk Factors and Behaviours that Influence Disease Onset and Progression. International Journal of Molecular Sciences, 2015, 16, 6093-6112.	4.1	254
68	Mesenchymal Stem Cells and their Potential for Microengineering the Chondrocyte Niche. EBioMedicine, 2015, 2, 1560-1561.	6.1	4
69	A multilayered microfluidic blood vessel-like structure. Biomedical Microdevices, 2015, 17, 88.	2.8	109
70	Ni Doped CuO Nanoparticles: Structural and Optical Characterizations. Current Nanoscience, 2015, 11, 191-197.	1.2	48
71	Application of Wavelet Transform for PDZ Domain Classification. PLoS ONE, 2015, 10, e0122873.	2.5	3
72	The First Observation of Memory Effects in the InfraRed (FT-IR) Measurements: Do Successive Measurements Remember Each Other?. PLoS ONE, 2014, 9, e94305.	2.5	9

#	Article	IF	CITATIONS
73	Finding the winning combination. Organogenesis, 2014, 10, 299-302.	1.2	4
74	Modeling carbon nanomaterial cell internalization for drug carrier applications. , 2014, , .		0
75	Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 2014, 10, 11-25.	8.3	611
76	Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas, 2014, 78, 188-198.	2.4	225
77	Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling. Cellular Signalling, 2014, 26, 979-1000.	3.6	59
78	Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 2014, 35, 6268-6277.	11.4	109
79	Ser/Thr-phosphoprotein phosphatases in chondrogenesis: neglected components of a two-player game. Cellular Signalling, 2014, 26, 2175-2185.	3.6	19
80	Polymeric Biomaterials for Implantable Prostheses. , 2014, , 309-331.		17
81	Microfluidic techniques for development of 3D vascularized tissue. Biomaterials, 2014, 35, 7308-7325.	11.4	254
82	Syntheses and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices. Thin Solid Films, 2013, 531, 70-75.	1.8	11
83	Raman Spectra of Nanodiamonds: New Treatment Procedure Directed for Improved Raman Signal Marker Detection. Mathematical Problems in Engineering, 2013, 2013, 1-11.	1.1	4
84	On Classification of PDZ Domains: A Computational Study. Mathematical Problems in Engineering, 2013, 2013, 1-9.	1.1	0
85	Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine, 2012, 7, 6003.	6.7	1,030
86	Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 2012, 7, 3527.	6.7	629
87	High-energy ball milling technique for ZnO nanoparticles as antibacterial material. International Journal of Nanomedicine, 2011, 6, 863.	6.7	191
88	Subunit-specific polyclonal antibody targeting human 🖥 GABAC receptor. Experimental Eye Research, 2011, 93, 59-64.	2.6	1
89	Generation of recombinant guinea pig antibody fragments to the human GABAC receptor. Journal of Immunological Methods, 2011, 368, 36-44.	1.4	2
90	Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Protein Science, 2011, 20, 867-879.	7.6	3

#	Article	IF	CITATIONS
91	Mesenchymal stem cells in regenerative medicine: Opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. Journal of Cellular Physiology, 2010, 222, 23-32.	4.1	188
92	Targeting GIPC/Synectin in Pancreatic Cancer Inhibits Tumor Growth. Clinical Cancer Research, 2009, 15, 4095-4103.	7.0	40
93	T7 phage display as a method of peptide ligand discovery for PDZ domain proteins. Biopolymers, 2009, 92, 183-193.	2.4	26
94	How Do Halogen Substituents Contribute to Proteinâ€Binding Interactions? A Thermodynamic Study of Peptide Ligands with Diverse Aryl Halides. ChemBioChem, 2008, 9, 2793-2795.	2.6	26