

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9401238/publications.pdf Version: 2024-02-01

Τιλινμι

#	Article	IF	CITATIONS
1	Shortened processing duration of high-performance Sm-Co-Fe-Cu-Zr magnets by stress-aging. Journal of Materials Science and Technology, 2022, 106, 70-76.	10.7	11
2	Enhancing reversible entropy change of all-d-metal Ni37.5Co12.5Mn35Ti15 alloy by multiple external fields. Scripta Materialia, 2022, 207, 114303.	5.2	9
3	Microscopic origin of the enhanced piezoelectric thermal stability in acceptor doped lead-free Ba(Ti0.8Zr0.2)O3-50(Ba0.7Ca0.3)TiO3 ceramic. Ceramics International, 2022, 48, 5274-5279.	4.8	2
4	On the ÎμÂ→ÂÏ,, phase transformation and twinning in L10â^'MnAl alloys. Acta Materialia, 2022, 232, 117892.	7.9	8
5	Grain boundary segregation behavior in Fe-rich Sm-Co-Fe-Cu-Zr magnets. Materialia, 2022, 22, 101382.	2.7	1
6	Understanding of the giant magnetic entropy change around the co-occurrence point of martensitic and magnetic transitions in Ni-Mn-In Heusler alloy. Acta Materialia, 2022, 229, 117839.	7.9	4
7	Effects of pre-aging on defects evolution and magnetic properties of Sm-Co-Fe-Cu-Zr magnets. Journal of Rare Earths, 2022, 40, 1878-1884.	4.8	4
8	A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength. Nature Materials, 2022, 21, 1003-1007.	27.5	18
9	Sensitive electric field control of first-order phase transition in epitaxial multiferroic heterostructures. Acta Materialia, 2022, 237, 118145.	7.9	1
10	Enhanced magnetic properties in chemically inhomogeneous Nd-Dy-Fe-B sintered magnets by multi-main-phase process. Journal of Rare Earths, 2021, 39, 558-564.	4.8	11
11	Promoting the La solution in 2:14:1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity. Journal of Materials Science and Technology, 2021, 62, 195-202.	10.7	10
12	Fe content influence on the microstructure of solution-treated Sm-Co-Fe-Cu-Zr alloys. Intermetallics, 2021, 129, 107049.	3.9	12
13	Atomic scale understanding of the defects process in concurrent recrystallization and precipitation of Sm-Co-Fe-Cu-Zr alloys. Acta Materialia, 2021, 202, 290-301.	7.9	45
14	Grain boundary effect on the microstructure of solution-treated Fe-rich Sm-Co-Fe-Cu-Zr alloys. Journal of Alloys and Compounds, 2021, 853, 156974.	5.5	16
15	Electric field control of magnetism through modulating phase separation in (011)-Nd0.5Sr0.5MnO3/PMN-PT heterostructures. Nanoscale, 2021, 13, 8030-8037.	5.6	2
16	Large and sensitive magnetostriction in ferromagnetic composites with nanodispersive precipitates. NPG Asia Materials, 2021, 13, .	7.9	34
17	Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling. Journal of the American Chemical Society, 2021, 143, 1590-1597.	13.7	33
18	Dynamic precipitation and the resultant magnetostriction enhancement in [001]-oriented Fe-Ga alloys. Acta Materialia, 2021, 206, 116631.	7.9	29

#	Article	lF	CITATIONS
19	Revisiting the pinning sites in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Journal of Rare Earths, 2021, 39, 1560-1566.	4.8	8
20	Nanoscale Phase Separation and Large Refrigerant Capacity in Magnetocaloric Material LaFe _{11.5} Si _{1.5} . Chemistry of Materials, 2021, 33, 2837-2846.	6.7	6
21	Long term aging-induced microstructure and magnetic performance changes in Sm-Co-Fe-Cu-Zr magnets. Scientia Sinica: Physica, Mechanica Et Astronomica, 2021, 51, 067518.	0.4	1
22	Achieving excellent superelasticity and extraordinary elastocaloric effect in a directionally solidified Co-V-Ga alloy. Scripta Materialia, 2021, 204, 114123.	5.2	17
23	Exceptional combination of large magnetostriction, low hysteresis and wide working temperature range in (1-x)TbFe2-xDyCo2 alloys. Acta Materialia, 2021, 220, 117308.	7.9	9
24	Strengthened caloric effect in MnCoSi under combined applications of magnetic field and hydrostatic pressure. Journal of Materials Science, 2021, 56, 20060-20070.	3.7	5
25	Role of nanoscale interfacial defects on magnetic properties of the 2:17-type Sm–Co permanent magnets. Journal of Alloys and Compounds, 2020, 816, 152620.	5.5	33
26	Nd-Fe-B sintered magnets with low rare earth content fabricated via Dy71.5Fe28.5 grain boundary restructuring. Journal of Magnetism and Magnetic Materials, 2020, 498, 166162.	2.3	8
27	Balancing the microstructure and chemical heterogeneity of multi-main-phase Nd-Ce-La-Fe-B sintered magnets by tailoring the liquid-phase-sintering. Materials and Design, 2020, 186, 108308.	7.0	25
28	Magnetic properties, thermal stability, and microstructure of spark plasma sintered multi-main-phase Nd-Ce-Fe-B magnet with PrCu addition. Journal of Alloys and Compounds, 2020, 822, 153612.	5.5	16
29	Cell-boundary-structure controlled magnetic-domain-wall-pinning in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Materials Characterization, 2020, 169, 110575.	4.4	10
30	Improved magnetostriction in Galfenol alloys by aligning crystal growth direction along easy magnetization axis. Scientific Reports, 2020, 10, 20055.	3.3	8
31	Formation mechanism of tetragonal nanoprecipitates in Fe–Ga alloys that dominate the material's large magnetostriction. Scripta Materialia, 2020, 185, 129-133.	5.2	37
32	Internal structure evolution of L12 variants in aged Fe-Ga alloys. Journal of Alloys and Compounds, 2020, 836, 155282.	5.5	12
33	Role of primary Zr-rich particles on microstructure and magnetic properties of 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Journal of Materials Science and Technology, 2020, 53, 73-81.	10.7	25
34	Defects-aggregated cell boundaries induced domain wall curvature change in Fe-rich Sm–Co–Fe–Cu–Zr permanent magnets. Journal of Materials Science, 2020, 55, 13258-13269.	3.7	23
35	Strain control of phase transition and magnetocaloric effect in Nd0.5Sr0.5MnO3 thin films. Applied Physics Letters, 2020, 116, .	3.3	3
36	Magnetostriction enhancement in ferromagnetic strain glass by approaching the crossover of martensite. Applied Physics Letters, 2020, 116, .	3.3	4

#	Article	IF	CITATIONS
37	ldentifications of SmCo5 and Sm+1Co5â^'1-type phases in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Scripta Materialia, 2020, 182, 1-5.	5.2	34
38	Correlation between microstructural heterogeneity and energy product in hot deformed Nd-Fe-B magnets. Journal of Magnetism and Magnetic Materials, 2020, 508, 166847.	2.3	9
39	Microstructural origin of the magnetostriction deterioration in slowly cooled Fe81Ga19. Journal of Alloys and Compounds, 2019, 786, 300-305.	5.5	8
40	Computational analysis of microstructure-coercivity relation in multi-main-phase Nd–Ce–Fe–B magnets. Journal Physics D: Applied Physics, 2019, 52, 135002.	2.8	11
41	Squareness factors of demagnetization curves for multi-main-phase Nd-Ce-Fe-B magnets with different Ce contents. Journal of Magnetism and Magnetic Materials, 2019, 487, 165355.	2.3	11
42	Microstructure evolution of Dy69Ni31-added Nd-Fe-B sintered magnets during annealing. Journal of Magnetism and Magnetic Materials, 2019, 486, 165260.	2.3	11
43	Enhanced thermal stability of piezoelectricity in lead-free (Ba,Ca)(Ti,Zr)O3 systems through tailoring phase transition behavior. Ceramics International, 2019, 45, 10304-10309.	4.8	9
44	Sign-changed-magnetostriction effect of morphotropic phase boundary in pseudobinary <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>DyC</mml:mi><mml:msub><mr mathvariant="normal">o<mml:mn>2</mml:mn></mr></mml:msub><mr mathvariant="normal">o<mml:mn>2</mml:mn><mr mathvariant="normal">o<mml:mn>2</mml:mn>a^<mr ml:mcov="">a</mr></mr></mr></mml:mrow></mml:math>	nl:mi ni>D y Æk/mi	ml:r a i> <mml:n< td=""></mml:n<>
45	Novel hydrogen decrepitation behaviors of (La, Ce)-Fe-B strips. AIP Advances, 2018, 8, 056233.	1.3	3
46	Enhanced magnetostriction of Fe81Ga19 by approaching an instable phase boundary. Scripta Materialia, 2018, 146, 200-203.	5.2	17
47	Post-sinter annealing influences on coercivity of multi-main-phase Nd-Ce-Fe-B magnets. Acta Materialia, 2018, 146, 97-105.	7.9	58
48	Magnetic performance change of multi-main-phase Nd–Ce–Fe–B magnets by diffusing (Nd,) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 50
49	Grain boundary restructuring of multi-main-phase Nd-Ce-Fe-B sintered magnets with Nd hydrides. Acta Materialia, 2018, 142, 18-28.	7.9	93
50	Evidence for lattice softening of the Fe-Ga magnetostrictive alloy: Stress-induced local martensites. Materials and Design, 2018, 140, 1-6.	7.0	14
51	Crucial role of the REFe2 intergranular phase on corrosion resistance of Nd-La-Ce-Fe-B sintered magnets. Journal of Alloys and Compounds, 2018, 735, 2225-2235.	5.5	21
52	Temperature invariable magnetization in Co-Al-Fe alloys by a martensitic transformation. Applied Physics Letters, 2018, 113, 172402.	3.3	3
53	Martensitic transformation in ordering-treated Fe74Ga26 alloy. Journal of Alloys and Compounds, 2018, 767, 270-275.	5.5	7
54	Ferromagnetic composite with stress-insensitive magnetic permeability: Compensation of stress-induced anisotropies. Physical Review Materials, 2018, 2, .	2.4	9

#	Article	IF	CITATIONS
55	Tailoring the Impact Toughness of Sintered NdFeB Magnets via Surface Coating. Journal of Magnetics, 2018, 23, 79-85.	0.4	1
56	Highly thermal-stable ferromagnetism by a natural composite. Nature Communications, 2017, 8, 13937.	12.8	54
57	Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets. Acta Materialia, 2017, 128, 22-30.	7.9	144
58	Tailoring volume magnetostriction of giant magnetostrictive materials by engineering magnetic domain morphology. Applied Physics Letters, 2017, 110, 062403.	3.3	4
59	Enhanced coercivity of Nd-Ce-Fe-B sintered magnets by adding (Nd, Pr)-H powders. Journal of Alloys and Compounds, 2017, 721, 1-7.	5.5	45
60	Improved thermal stability of Nd-Ce-Fe-B sintered magnets by Y substitution. Scripta Materialia, 2017, 131, 11-14.	5.2	77
61	Correlation between magnetostriction and magnetic structure in pseudobinary compounds Tb(Co1-xFex)2. AIP Advances, 2017, 7, .	1.3	7
62	Magnetic properties and microstructure of sintered Nd Fe B magnets with intergranular addition of Ni powders. Journal of Alloys and Compounds, 2017, 726, 846-851.	5.5	18
63	Tailoring magnetostriction sign of ferromagnetic composite by increasing magnetic field strength. Applied Physics Letters, 2016, 109, .	3.3	38
64	Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality. Scientific Reports, 2016, 6, 32200.	3.3	106
65	Manipulating Ce Valence in RE2Fe14B Tetragonal Compounds by La-Ce Co-doping: Resultant Crystallographic and Magnetic Anomaly. Scientific Reports, 2016, 6, 30194.	3.3	65
66	Mechanical Properties of La–Ce-Substituted Nd–Fe–B Magnets. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	33
67	Effect of Dy ₂ O ₃ intergranular addition on microstructure and magnetic properties of (Nd, Dy)–Fe–B sintered magnets. Materials Express, 2016, 6, 93-99.	0.5	8
68	Coercivity enhancement of Nd–Fe–B sintered magnets with intergranular adding (Pr, Dy, Cu)â^'Hx powders. Journal of Magnetism and Magnetic Materials, 2016, 399, 159-163.	2.3	37
69	Coercivity enhancement of Dy-free Nd–Fe–B sintered magnets by intergranular adding Ho63.4Fe36.6 alloy. Journal of Magnetism and Magnetic Materials, 2016, 397, 139-144.	2.3	25
70	Coercivity enhancement of low rare earth Nd–Fe–B sintered magnets by optimizing microstructure. Journal of Magnetism and Magnetic Materials, 2015, 382, 26-30.	2.3	10
71	Role of hydrogen in Nd–Fe–B sintered magnets with DyH addition. Journal of Alloys and Compounds, 2015, 628, 282-286.	5.5	29
72	Coercivity enhancements of Nd–Fe–B sintered magnets by diffusing DyH _{<i>x</i>} along different axes. Journal Physics D: Applied Physics, 2015, 48, 215001.	2.8	33

Τιάννυ

#	Article	IF	CITATIONS
73	Effects of Dy71.5Fe28.5 intergranular addition on the microstructure and the corrosion resistance of Nd–Fe–B sintered magnets. Journal of Magnetism and Magnetic Materials, 2015, 384, 133-137.	2.3	31
74	Spatially-confined lithiation–delithiation in highly dense nanocomposite anodes towards advanced lithium-ion batteries. Energy and Environmental Science, 2015, 8, 1471-1479.	30.8	69
75	Structural origin for the local strong anisotropy in melt-spun Fe-Ga-Tb: Tetragonal nanoparticles. Applied Physics Letters, 2015, 106, .	3.3	28
76	Suppression of martensitic transformation in Fe50Mn23Ga27 by local symmetry breaking. Applied Physics Letters, 2015, 106, .	3.3	9
77	Improved corrosion resistance of low rare-earth Nd–Fe–B sintered magnets by Nd6Co13Cu grain boundary restructuring. Journal of Magnetism and Magnetic Materials, 2015, 379, 186-191.	2.3	17
78	Magnetic and anticorrosion properties of two-powder (Pr, Nd)12.6Fe81.3B6.1-type sintered magnets with additions of (Pr, Nd)32.5Fe62.0Cu5.5. Materials Chemistry and Physics, 2015, 151, 126-132.	4.0	8
79	Local rhombohedral symmetry in Tb0.3Dy0.7Fe2 near the morphotropic phase boundary. Applied Physics Letters, 2014, 105, .	3.3	32
80	Effect of the induced anisotropy axis on altering domain alignment and magnetostriction of Terfenol-D. Applied Physics Letters, 2014, 104, 052409.	3.3	6
81	Influence of Ta intergranular addition on microstructure and corrosion resistance of Nd–Dy–Fe–B sintered magnets. Journal of Alloys and Compounds, 2014, 593, 137-140.	5.5	11
82	Coercivity enhancement of NdFeB sintered magnets by low melting point Dy32.5Fe62Cu5.5 alloy modification. Journal of Magnetism and Magnetic Materials, 2014, 355, 131-135.	2.3	69
83	Rapid coercivity increment of Nd–Fe–B sintered magnets by Dy69Ni31 grain boundary restructuring. Journal of Magnetism and Magnetic Materials, 2014, 370, 76-80.	2.3	55
84	Improvement of corrosion resistance of Cu and Nb co-added Nd–Fe–B sintered magnets. Materials Chemistry and Physics, 2014, 147, 982-986.	4.0	18
85	Room temperature ferromagnetism of amorphous MgO films prepared by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2014, 115, 997-1001.	2.3	18
86	High temperature oxidation resistance of hot-pressed h-BN/ZrO2 composites. Ceramics International, 2014, 40, 11171-11176.	4.8	24
87	Rapidly solidified Nd7Fe67B22Mo3Zr1 nanocomposite permanent magnets. Journal of Magnetism and Magnetic Materials, 2014, 355, 164-168.	2.3	14
88	Effects of alignment on the magnetic and mechanical properties of sintered Nd–Fe–B magnets. Journal of Alloys and Compounds, 2013, 563, 161-164.	5.5	27
89	Enhanced magnetostriction of a narrow hysteresis Tb0.26Dy0.54Ho0.20Fe2 alloy. Acta Metallurgica Sinica (English Letters), 2013, 26, 461-466.	2.9	0
90	High coercivity (Nd8Y3)–(Fe62Nb3Cr1)–B23 magnets produced by injection casting. Journal of Materials Science, 2013, 48, 1779-1786.	3.7	11

#	Article	IF	CITATIONS
91	Domain Rotation Simulation of the Magnetostriction Jump Effect of (110) Oriented TbDyFe Crystals. Chinese Physics Letters, 2012, 29, 027501.	3.3	6
92	Fe ₆₄ B _{22.8} Nd _{6.6} Y _{3.9} Nb _{2.7} bulk nanocomposite magnets with improved size and magnetic properties. Journal of Materials Research, 2012, 27, 725-729.	2.6	2
93	Induced additional anisotropy influences on magnetostriction of giant magnetostrictive materials. Journal of Applied Physics, 2012, 112, .	2.5	9
94	Structure and magnetic properties of γ′-Fe4N films grown on MgO-buffered Si (001). Physica B: Condensed Matter, 2012, 407, 4783-4786.	2.7	6
95	Anomalous Magnetization Behavior of Fe-N Films Deposited by Reactive Pulsed Laser Deposition. IEEE Transactions on Magnetics, 2012, 48, 2899-2902.	2.1	1
96	Nd5Fe64B23Mo4Y4 bulk nanocomposite permanent magnets produced by crystallizing amorphous precursors. Journal of Non-Crystalline Solids, 2012, 358, 1028-1031.	3.1	5
97	Improvement of corrosion resistance in Nd–Fe–B magnets through grain boundaries restructuring. Materials Letters, 2012, 75, 1-3.	2.6	42
98	Synthesis, structural and magnetic properties of the nanocomposite Fe63B23Nd7Y3Nb3Cr1 magnets. Journal of Magnetism and Magnetic Materials, 2012, 324, 1534-1538.	2.3	9
99	Fe65B22Nd9Mo4 bulk nanocomposite permanent magnets produced by crystallizing amorphous precursors. Journal of Magnetism and Magnetic Materials, 2012, 324, 1613-1616.	2.3	10
100	Synthesis, thermal stability and properties of [(Fe1â^'xCox)72Mo4B24]94Dy6 bulk metallic glasses. Journal of Alloys and Compounds, 2011, 509, 3843-3846.	5.5	15
101	Low temperature pulsed laser deposition of textured γ′-Fe4N films on Si (100). Journal of Alloys and Compounds, 2011, 509, 5075-5078.	5.5	9
102	The magnetic, structure and mechanical properties of rapidly solidified (Nd7Y2.5)–(Fe64.5Nb3)–B23 nanocomposite permanent magnet. Journal of Alloys and Compounds, 2011, 509, 8952-8957.	5.5	7
103	Changes of microstructure and magnetic properties of Nd–Fe–B sintered magnets by doping Al–Cu. Journal of Magnetism and Magnetic Materials, 2011, 323, 2549-2553.	2.3	34
104	Corrosion behavior of Al100â^'xCux (15≤≤5) doped Nd–Fe–B magnets. Materials Chemistry and Physics, 2011, 126, 195-199.	4.0	13
105	Domain rotation simulation of anisotropic magnetostrictions in giant magnetostrictive materials. Journal of Applied Physics, 2011, 110, 063901.	2.5	4
106	Magnetostriction of a ã€^110〉 oriented Tb0.3Dy0.7Fe1.95 polycrystals annealed under a noncoaxial magnetic field. Journal of Materials Research, 2011, 26, 31-35.	2.6	3
107	Magnetostriction "drop―in ã€^110〉 oriented polycrystals Tb0.36Dy0.64(Fe0.85Co0.15)2 after transve field annealing. Journal of Applied Physics, 2011, 109, 07A937	rse 2.5	3
108	Glass forming ability, magnetic and mechanical properties of (Fe72Mo4B24)100â^'xDyx (x=4–7) bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 161-164.	5.6	23

#	Article	IF	CITATIONS
109	Corrosion resistance of Nd–Fe–B sintered magnets with intergranular addition of Cu60Zn40 powders. Physica B: Condensed Matter, 2010, 405, 3303-3307.	2.7	12
110	Electromagnetic wave absorption properties of flaky Fe–Ti–Si–Al nanocrystalline composites. Journal of Magnetism and Magnetic Materials, 2010, 322, 940-944.	2.3	46
111	Effect of magnetic annealing on magnetostrictive performance of a ã€^110〉 oriented crystal Tb0.3Dy0.7Fe1.95. Journal of Magnetism and Magnetic Materials, 2010, 322, 1889-1893.	2.3	17
112	Anomalous phase transformation in magnetostrictive Fe81Ga19 alloy. Journal of Magnetism and Magnetic Materials, 2010, 322, 2882-2887.	2.3	11
113	Effect of post-sintering annealing on microstructure and coercivity of Al85Cu15-added Nd–Fe–B sintered magnets. Journal of Magnetism and Magnetic Materials, 2010, 322, 3710-3713.	2.3	33
114	Magnetic force microscopy study of heat-treated Fe81Ga19 with different cooling rates. Physica B: Condensed Matter, 2010, 405, 3129-3134.	2.7	29
115	Stress–strain behaviors of ã€^110〉-oriented Tb _{0.3} Dy _{0.7} Fe _{1.95} after magnetic annealing. Journal of Materials Research, 2010, 25, 1371-1374.	2.6	0
116	Anisotropic magnetostriction in a âŸ 110⟩ oriented crystal Tb0.36Dy0.64(Fe0.85Co0.15)2 after coaxial field annealing. Journal of Applied Physics, 2010, 108, 043908.	2.5	6
117	Magnetic force microscopy study of magnetically annealed Tb0.36Dy0.64(Fe0.85Co0.15)2 polycrystals. Journal of Applied Physics, 2010, 107, 09A934.	2.5	14
118	Fabrication of low-cost Nd–Fe–B sintered magnets reusing ultrafine powders. Materials Science and Technology, 2010, 26, 193-196.	1.6	1
119	Improvement of corrosion resistance and magnetic properties of Nd–Fe–B sintered magnets by Al85Cu15 intergranular addition. Journal of Alloys and Compounds, 2010, 502, 346-350.	5.5	43
120	Stress influences on magnetization and magnetostriction in magnetically annealed Tb0.36Dy0.64(Fe0.85Co0.15)2 polycrystals. Journal of Applied Physics, 2009, 105, .	2.5	13
121	Enhanced Young's moduli and damping capacity in magnetically annealed Tb _{0.36} Dy _{0.64} (Fe _{0.85} Co _{0.15}) ₂ polycrystals. Journal Physics D: Applied Physics, 2009, 42, 125004.	2.8	3
122	Electroless Ni-Co-P Coatings on Sintered Nd-Fe-B Magnets with Improved Corrosion Resistance. Advanced Materials Research, 2009, 75, 53-56.	0.3	2
123	Improved magnetostriction in cold-rolled and annealed Mn50Fe50 alloy. Scripta Materialia, 2009, 61, 427-430.	5.2	8
124	Preparation of coatings with high adhesion strength and high corrosion resistance on sintered Nd–Fe–B magnets through electroless plating. Materials Chemistry and Physics, 2009, 113, 764-767.	4.0	19
125	Effect of heat treatment on structure, magnetization and magnetostriction of Fe81Ga19 melt-spun ribbons. Physica B: Condensed Matter, 2009, 404, 4155-4158.	2.7	16
126	Effect of SiO2 nanopowders on magnetic properties and corrosion resistance of sintered Nd–Fe–B magnets. Journal of Magnetism and Magnetic Materials, 2009, 321, 392-395.	2.3	18

Τιάννυ

#	Article	IF	CITATIONS
127	Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields. Journal of Magnetism and Magnetic Materials, 2009, 321, 1221-1226.	2.3	23
128	Two-dimensional Monte Carlo simulations of a suspension comprised of magnetic and nonmagnetic particles in gradient magnetic fields. Journal of Magnetism and Magnetic Materials, 2009, 321, 3250-3255.	2.3	8
129	Antiferromagnetic Mn50Fe50 wire with large magnetostriction. Journal of Magnetism and Magnetic Materials, 2009, 321, 3778-3781.	2.3	7
130	Microstructures of Ni–ZrO2 functionally graded materials fabricated via slip casting under gradient magnetic fields. Journal of Alloys and Compounds, 2009, 479, 750-754.	5.5	14
131	Structure, magnetostrictive, and magnetic properties of heat-treated Mn42Fe58 alloys. Journal of Alloys and Compounds, 2009, 485, 510-513.	5.5	4
132	Design and fabrication of sintered Nd-Fe-B magnets with a low temperature coefficient of intrinsic coercivity. Science of Sintering, 2009, 41, 91-99.	1.4	16
133	Improved microhardness and wear resistance of the as-deposited electroless Ni–P coating. Surface and Coatings Technology, 2008, 202, 5909-5913.	4.8	97
134	Structure and magnetic properties of magnetostrictive compounds Tb0.36Dy0.64(Fe0.85Co0.15)2â^'xBx (0⩼2x⩼20.15). Journal of Magnetism and Magnetic Materials, 2008, 320, 2368-2372.	2.3	2
135	Effects of Yb3+ on the corrosion resistance and deposition rate of electroless Ni–P deposits. Applied Surface Science, 2008, 255, 2176-2179.	6.1	14
136	Co substitution effect on magnetic properties of magnetostrictive compounds Tb0.36Dy0.64(Fe1â^'xCox)2 (0⩼2x⩼20.30). Physica B: Condensed Matter, 2008, 403, 3677-3681.	2.7	5
137	Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd–Fe–B magnets. Physica B: Condensed Matter, 2008, 403, 4182-4185.	2.7	37
138	The evolution of microstructure and magnetic properties of Fe–Si–Al powders prepared through melt-spinning. Scripta Materialia, 2008, 58, 243-246.	5.2	37
139	A kind of wide operating temperature range giant magnetostrictive alloys. Journal of Alloys and Compounds, 2008, 449, 156-160.	5.5	5
140	Microstructure and magnetic properties of nanocrystalline Co-doped Sendust alloys prepared by melt spinning. Journal of Alloys and Compounds, 2008, 459, 447-451.	5.5	19
141	Relation of Viscosity and Inner Structure of Suspension under Magnetic Field. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 836-840.	1.3	1
142	Differential magnetostrictive response in magnetically annealed Tb0.36Dy0.64(Fe0.85Co0.15)2 with âŸ 110⟩ crystal orientation. Applied Physics Letters, 2007, 90, 102502.	3.3	20
143	Effects of NH4F on the deposition rate and buffering capability of electroless Ni–P plating solution. Surface and Coatings Technology, 2007, 202, 217-221.	4.8	17
144	Magnetostriction of Tb0.36Dy0.64(Fe1â^'xCox)2 (x=0–0.20) ã€^112〉-oriented crystals. Journal of Alloys an Compounds. 2006. 414. 276-281.	d _{5.5}	9

#	Article	IF	CITATIONS
145	Magnetomechanical damping capacity of Tb0.36Dy0.64(Fe1â^'xTx)2 (T=Co,Mn) alloys. Journal of Applied Physics, 2006, 100, 023901.	2.5	7
146	The Co-doped Tb0.36Dy0.64Fe2 magnetostrictive alloys with a wide operating temperature range. Journal of Magnetism and Magnetic Materials, 2005, 292, 317-324.	2.3	34
147	Magnetostriction in ⟨110⟩ and ⟨112⟩ oriented crystals Tb0.36Dy0.64(Fe0.85Co0.15)2. Applied Physic 2005, 86, 162505.	s Letters, 3.3	30
148	Magnetostriction of ã€^110〉 oriented crystals in Tb0.36Dy0.64(Fe1â^xCox)2 (x = 0–0.30) alloys. Journal of Alloys and Compounds, 2005, 388, 34-40.	5.5	12

10