
Michael E Ragozzino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/940123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of the Partial M1 Muscarinic Cholinergic Receptor Agonist CDD-0102A on Stereotyped Motor Behaviors and Reversal Learning in the BTBR Mouse Model of Autism. International Journal of Neuropsychopharmacology, 2022, 25, 64-74.	2.1	6
2	Subarachnoid hemorrhage in C57BL/6J mice increases motor stereotypies and compulsive-like behaviors. Neurological Research, 2021, 43, 239-251.	1.3	6
3	Catechol-O-methyltransferase genotype differentially contributes to the flexibility and stability of cognitive sets in patients with psychotic disorders and their first-degree relatives. Schizophrenia Research, 2020, 223, 236-241.	2.0	1
4	Tandospirone, a Partial 5-HT1A Receptor Agonist, Administered Systemically or Into Anterior Cingulate Attenuates Repetitive Behaviors in Shank3B Mice. International Journal of Neuropsychopharmacology, 2020, 23, 533-542.	2.1	14
5	Privileged scaffold-based design to identify a novel drug-like 5-HT7 receptor-preferring agonist to target Fragile X syndrome. European Journal of Medicinal Chemistry, 2020, 199, 112395.	5.5	9
6	Familiality of behavioral flexibility and response inhibition deficits in autism spectrum disorder (ASD). Molecular Autism, 2019, 10, 47.	4.9	20
7	Cognitive Flexibility Deficits Following 6-OHDA Lesions of the Rat Dorsomedial Striatum. Neuroscience, 2018, 374, 80-90.	2.3	51
8	The adenosine A _{2A} receptor agonist, CGS 21680, attenuates a probabilistic reversal learning deficit and elevated grooming behavior in BTBR mice. Autism Research, 2018, 11, 223-233.	3.8	28
9	Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS ONE, 2018, 13, e0204941.	2.5	225
10	Beneficial and adverse effects of antipsychotic medication on cognitive flexibility are related to COMT genotype in first episode psychosis. Schizophrenia Research, 2018, 202, 212-216.	2.0	7
11	Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania. Neuroscience, 2017, 345, 229-242.	2.3	17
12	Cognitive flexibility: Development, disease and treatment. Neuroscience, 2017, 345, 1-2.	2.3	10
13	<scp>5HT_{2A}</scp> receptor blockade in dorsomedial striatum reduces repetitive behaviors in <scp>BTBR</scp> mice. Genes, Brain and Behavior, 2017, 16, 342-351.	2.2	42
14	Pedunculopontine tegmental nucleus lesions impair probabilistic reversal learning by reducing sensitivity to positive reward feedback. Neurobiology of Learning and Memory, 2016, 131, 1-8.	1.9	21
15	M100907 attenuates elevated grooming behavior in the BTBR mouse. Behavioural Brain Research, 2016, 313, 67-70.	2.2	26
16	Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release. Neuropsychopharmacology, 2016, 41, 989-1002.	5.4	44
17	Cognitive Set Shifting Deficits and Their Relationship to Repetitive Behaviors in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2015, 45, 805-815.	2.7	95
18	Regressing to Prior Response Preference After Set Switching Implicates Striatal Dysfunction Across Psychotic Disorders: Findings From the B-SNIP Study. Schizophrenia Bulletin, 2015, 41, 940-950.	4.3	15

#	Article	IF	CITATIONS
19	Muscarinic Cholinergic Receptor Agonists and Antagonists. , 2015, , 1015-1019.		0
20	Oxotremorine treatment reduces repetitive behaviors in BTBR T+ tf/J mice. Frontiers in Synaptic Neuroscience, 2014, 6, 17.	2.5	27
21	Risperidone and the 5â€ <scp>HT_{2A}</scp> Receptor Antagonist <scp>M</scp> 100907 Improve Probabilistic Reversal Learning in <scp>BTBR T + tf</scp> / <scp>J</scp> Mice. Autism Research, 2014, 7, 555-567.	3.8	70
22	Determining striatal extracellular glutamate levels in xCT mutant mice using LFPS CE-LIF. Analytical Methods, 2014, 6, 2916-2922.	2.7	9
23	Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. Learning and Memory, 2014, 21, 368-379.	1.3	53
24	The prelimbic cortex and subthalamic nucleus contribute to cue-guided behavioral switching. Neurobiology of Learning and Memory, 2014, 107, 65-78.	1.9	17
25	Acute Exacerbation of Sleep Apnea by Hyperoxia Impairs Cognitive Flexibility in Brown-Norway Rats. Sleep, 2014, 37, 1851-1861.	1.1	5
26	Brown Norway and Zucker Lean Rats Demonstrate Circadian Variation in Ventilation and Sleep Apnea. Sleep, 2014, 37, 715-721.	1.1	10
27	Reduced behavioral flexibility in autism spectrum disorders Neuropsychology, 2013, 27, 152-160.	1.3	207
28	Muscarinic Cholinergic Receptor Agonists and Antagonists. , 2013, , 1-6.		0
29	The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning. Journal of Psychopharmacology, 2012, 26, 1443-1455.	4.0	46
30	The Selective M ₁ Muscarinic Cholinergic Agonist CDD-0102A Enhances Working Memory and Cognitive Flexibility. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 588-594.	2.5	47
31	Differences in BTBR T+ tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. Behavioural Brain Research, 2012, 227, 64-72.	2.2	168
32	The effects of PRX-07034, a novel 5-HT6 antagonist, on cognitive flexibility and working memory in rats. Psychopharmacology, 2012, 220, 687-696.	3.1	42
33	Human reversal learning under conditions of certain versus uncertain outcomes. NeuroImage, 2011, 56, 315-322.	4.2	48
34	Differential effects of 5-HT2A and 5-HT2C receptor blockade on strategy-switching. Behavioural Brain Research, 2011, 219, 123-131.	2.2	42
35	Primary food reward and rewardâ€predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. European Journal of Neuroscience, 2011, 34, 1997-2006.	2.6	147
36	The Parafascicular Thalamic Nucleus Concomitantly Influences Behavioral Flexibility and Dorsomedial Striatal Acetylcholine Output in Rats. Journal of Neuroscience, 2010, 30, 14390-14398.	3.6	113

#	Article	IF	CITATIONS
37	Acetylcholine activity in selective striatal regions supports behavioral flexibility. Neurobiology of Learning and Memory, 2009, 91, 13-22.	1.9	110
38	Differential involvement of M1-type and M4-type muscarinic cholinergic receptors in the dorsomedial striatum in task switching. Neurobiology of Learning and Memory, 2008, 89, 114-124.	1.9	78
39	The effect of rat anterior cingulate inactivation on cognitive flexibility Behavioral Neuroscience, 2007, 121, 698-706.	1.2	56
40	VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology, 2007, 53, 563-573.	4.1	86
41	Role of the striatum in learning and memory. , 2007, , 355-379.		3
42	The Contribution of the Medial Prefrontal Cortex, Orbitofrontal Cortex, and Dorsomedial Striatum to Behavioral Flexibility. Annals of the New York Academy of Sciences, 2007, 1121, 355-375.	3.8	386
43	The effect of N-methyl-d-aspartate receptor blockade on acetylcholine efflux in the dorsomedial striatum during response reversal learning. Neuroscience, 2006, 143, 671-678.	2.3	32
44	The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiology of Learning and Memory, 2005, 83, 125-133.	1.9	165
45	The contribution of NMDA receptors in the dorsolateral striatum to egocentric response learning Behavioral Neuroscience, 2005, 119, 953-960.	1.2	48
46	Dynamic Changes in Acetylcholine Output in the Medial Striatum During Place Reversal Learning. Learning and Memory, 2004, 11, 70-77.	1.3	91
47	Differential effects of M1 muscarinic receptor blockade and nicotinic receptor blockade in the dorsomedial striatum on response reversal learning. Behavioural Brain Research, 2004, 154, 245-253.	2.2	74
48	The influence of NMDA receptors in the dorsomedial striatum on response reversal learning. Neurobiology of Learning and Memory, 2004, 82, 81-89.	1.9	73
49	The role of the prefrontal cortex in object–place learning: a test of the attribute specificity model. Behavioural Brain Research, 2003, 146, 159-165.	2.2	57
50	Acetylcholine actions in the dorsomedial striatum support the flexible shifting of response patterns. Neurobiology of Learning and Memory, 2003, 80, 257-267.	1.9	79
51	The contribution of the rat prelimbic-infralimbic areas to different forms of task switching Behavioral Neuroscience, 2003, 117, 1054-1065.	1.2	134
52	The Effects of Dopamine D1 Receptor Blockade in the Prelimbic-Infralimbic Areas on Behavioral Flexibility. Learning and Memory, 2002, 9, 18-28.	1.3	155
53	Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning Behavioral Neuroscience, 2002, 116, 105-115.	1.2	248
54	The Effects of Prelimbic and Infralimbic Lesions on Working Memory for Visual Objects in Rats. Neurobiology of Learning and Memory, 2002, 77, 29-43.	1.9	81

Michael E Ragozzino

#	Article	IF	CITATIONS
55	Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Research, 2002, 953, 205-214.	2.2	185
56	Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning Behavioral Neuroscience, 2002, 116, 105-115.	1.2	142
57	Role of the Medial and Lateral Caudate-Putamen in Mediating an Auditory Conditional Response Association. Neurobiology of Learning and Memory, 2001, 76, 106-116.	1.9	79
58	The role of rat dorsomedial prefrontal cortex in working memory for egocentric responses. Neuroscience Letters, 2001, 308, 145-148.	2.1	61
59	The contribution of cholinergic and dopaminergic afferents in the rat prefrontal cortex to learning, memory, and attention. Cognitive, Affective and Behavioral Neuroscience, 2000, 28, 238-247.	1.3	14
60	Involvement of the Prelimbic–Infralimbic Areas of the Rodent Prefrontal Cortex in Behavioral Flexibility for Place and Response Learning. Journal of Neuroscience, 1999, 19, 4585-4594.	3.6	523
61	Involvement of rodent prefrontal cortex subregions in strategy switching Behavioral Neuroscience, 1999, 113, 32-41.	1.2	216
62	Involvement of rodent prefrontal cortex subregions in strategy switching Behavioral Neuroscience, 1999, 113, 32-41.	1.2	107
63	Intra-amygdala infusions of scopolamine impair performance on a conditioned place preference task but not a spatial radial maze task. Behavioural Brain Research, 1998, 95, 219-226.	2.2	59
64	The role of the agranular insular cortex in working memory for food reward value and allocentric space in rats. Behavioural Brain Research, 1998, 98, 103-112.	2.2	49
65	The Effects of Muscarinic Cholinergic Receptor Blockade in the Rat Anterior Cingulate and Prelimbic/Infralimbic Cortices on Spatial Working Memory. Neurobiology of Learning and Memory, 1998, 69, 241-257.	1.9	65
66	"Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory": Correction to Ragozzino et al. (1998) Behavioral Neuroscience, 1998, 112, 747-747.	1.2	0
67	Differential involvement of the dorsal anterior cingulate and prelimbic–infralimbic areas of the rodent prefrontal cortex in spatial working memory Behavioral Neuroscience, 1998, 112, 293-303.	1.2	157
68	Modulation of Hippocampal Acetylcholine Release and Spontaneous Alternation Scores by Intrahippocampal Glucose Injections. Journal of Neuroscience, 1998, 18, 1595-1601.	3.6	195
69	Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory Behavioral Neuroscience, 1998, 112, 293-303.	1.2	70
70	Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4693-4698.	7.1	293
71	Pyruvate infusions into the septal area attenuate spontaneous alternation impairments induced by intraseptal morphine injections Behavioral Neuroscience, 1995, 109, 1074-1080.	1.2	40
72	Acetylcholine release from dissociated striatal cells. Brain Research, 1995, 697, 271-275.	2.2	13

MICHAEL E RAGOZZINO

#	Article	IF	CITATIONS
73	Pyruvate infusions into the septal area attenuate spontaneous alternation impairments induced by intraseptal morphine injections Behavioral Neuroscience, 1995, 109, 1074-1080.	1.2	20
74	Glucose attenuates a morphine-induced decrease in hippocampal acetylcholine output: an in vivo microdialysis study in rats. Brain Research, 1994, 655, 77-82.	2.2	57
75	Clucose attenuates the effect of combined muscarinic-nicotinic receptor blockade on spontaneous alternation. European Journal of Pharmacology, 1994, 256, 31-36.	3.5	36
76	Clucose enhancement of memory in patients with probable senile dementia of the Alzheimer's type. Neurobiology of Aging, 1993, 14, 523-528.	3.1	203
77	Spontaneous alternation and inhibitory avoidance impairments with morphine injections into the medial septum. Attenuation by glucose administration. Brain Research, 1992, 597, 241-249.	2.2	69
78	Behavioral Effects of Neural Transplantation. Cell Transplantation, 1992, 1, 401-427.	2.5	18
79	Glucose effects on mecamylamine-induced memory deficits and decreases in locomotor activity in mice. Behavioral and Neural Biology, 1991, 56, 271-282.	2.2	24
80	Naloxone modulates the behavioral effects of cholinergic agonists and antagonists. Psychopharmacology, 1991, 105, 57-62.	3.1	32
81	Chapter 48 NADPH-Diaphorase-containing neurons and cytochrome oxidase activity following striatal quinolinic acid lesions and fetal striatal transplants. Progress in Brain Research, 1990, 82, 427-431.	1.4	12
82	Tyrosine hydroxylase-positive fibers and neurons in transplanted striatal tissue in rats with quinolinic acid lesions of the striatum. Brain Research Bulletin, 1990, 25, 889-894.	3.0	8
83	Intraparenchymal Striatal Transplants Required for Maintenance of Behavioral Recovery in an Animal Model of Huntington's Disease. Journal of Neural Transplantation, 1989, 1, 23-31.	0.8	28