
Sarah M Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9400425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCM. Journal of Climate, 2008, 21, 3521-3532.	3.2	532
2	Pantropical climate interactions. Science, 2019, 363, .	12.6	419
3	The Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization. Journals of the Atmospheric Sciences, 2009, 66, 2812-2827.	1.7	294
4	Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nature Geoscience, 2013, 6, 940-944.	12.9	247
5	Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophysical Research Letters, 2013, 40, 2845-2850.	4.0	229
6	Impact of Polar Ozone Depletion on Subtropical Precipitation. Science, 2011, 332, 951-954.	12.6	220
7	Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 2018, 8, 1076-1081.	18.8	216
8	Expansion of the Hadley Cell under Global Warming: Winter versus Summer. Journal of Climate, 2012, 25, 8387-8393.	3.2	124
9	Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 2018, 11, 392-400.	12.9	100
10	The Interannual Relationship between the Latitude of the Eddy-Driven Jet and the Edge of the Hadley Cell. Journal of Climate, 2011, 24, 563-568.	3.2	79
11	Sensitivity of Intertropical Convergence Zone Movement to the Latitudinal Position of Thermal Forcing. Journal of Climate, 2014, 27, 3035-3042.	3.2	71
12	Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere?. Climate Dynamics, 2015, 44, 1457-1472.	3.8	68
13	Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	65
14	The impact of parametrized convection on cloud feedback. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140414.	3.4	63
15	Connecting tropical climate change with Southern Ocean heat uptake. Geophysical Research Letters, 2017, 44, 9449-9457.	4.0	61
16	Sensitivity of Climate Change Induced by the Weakening of the Atlantic Meridional Overturning Circulation to Cloud Feedback. Journal of Climate, 2010, 23, 378-389.	3.2	59
17	Walker circulation response to extratropical radiative forcing. Science Advances, 2020, 6, .	10.3	51
18	Uncertainty in Climate Change Projections of the Hadley Circulation: The Role of Internal Variability. Journal of Climate, 2013, 26, 7541-7554.	3.2	49

Sarah M Kang

#	Article	IF	CITATIONS
19	The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. Journal of Advances in Modeling Earth Systems, 2016, 8, 1868-1891.	3.8	47
20	Contrasting the tropical responses to zonally asymmetric extratropical and tropical thermal forcing. Climate Dynamics, 2014, 42, 2033-2043.	3.8	45
21	Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model. Journal of Climate, 2018, 31, 5609-5628.	3.2	40
22	Tropical precipitation, SSTs and the surface energy budget: a zonally symmetric perspective. Climate Dynamics, 2012, 38, 1917-1924.	3.8	34
23	Contrasting Local and Remote Impacts of Surface Heating on Polar Warming and Amplification. Journal of Climate, 2018, 31, 3155-3166.	3.2	33
24	Strong remote control of future equatorial warming by off-equatorial forcing. Nature Climate Change, 2020, 10, 124-129.	18.8	32
25	Zonal mean and shift modes of historical climate response to evolving aerosol distribution. Science Bulletin, 2021, 66, 2405-2411.	9.0	30
26	Dependence of Climate Response on Meridional Structure of External Thermal Forcing. Journal of Climate, 2014, 27, 5593-5600.	3.2	29
27	Extratropical Influence on the Tropical Rainfall Distribution. Current Climate Change Reports, 2020, 6, 24-36.	8.6	29
28	Response of the intertropical convergence zone to zonally asymmetric subtropical surface forcings. Geophysical Research Letters, 2015, 42, 9961-9969.	4.0	25
29	A model intercomparison of the tropical precipitation response to a CO 2 doubling in aquaplanet simulations. Geophysical Research Letters, 2017, 44, 993-1000.	4.0	23
30	Sensitivity of Polar Amplification to Varying Insolation Conditions. Journal of Climate, 2018, 31, 4933-4947.	3.2	22
31	Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer. Geophysical Research Letters, 2013, 40, 4054-4059.	4.0	20
32	Arctic greening can cause earlier seasonality of Arctic amplification. Geophysical Research Letters, 2015, 42, 536-541.	4.0	18
33	Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming. Climate Dynamics, 2017, 49, 3753-3763.	3.8	18
34	The Precipitation Response to an Idealized Subtropical Continent. Journal of Climate, 2016, 29, 4543-4564.	3.2	14
35	The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM. Geoscience Letters, 2018, 5, .	3.3	12
36	Sensitivity of the Climate Response to the Altitude of Black Carbon in the Northern Subtropics in an Aquaplanet GCM. Journal of Climate, 2015, 28, 6351-6359.	3.2	11

Sarah M Kang

#	Article	IF	CITATIONS
37	Common Warming Pattern Emerges Irrespective of Forcing Location. Journal of Advances in Modeling Earth Systems, 2017, 9, 2413-2424.	3.8	11
38	Vegetation-cloud feedbacks to future vegetation changes in the Arctic regions. Climate Dynamics, 2018, 50, 3745-3755.	3.8	10
39	Tropical Precipitation and Crossâ€Equatorial Heat Transport in Response to Localized Heating: Basin and Hemisphere Dependence. Geophysical Research Letters, 2018, 45, 11,949.	4.0	10
40	Relative Roles of Energy and Momentum Fluxes in the Tropical Response to Extratropical Thermal Forcing. Journal of Climate, 2021, 34, 3771-3786.	3.2	10
41	Global Warming Pattern Formation: The Role of Ocean Heat Uptake. Journal of Climate, 2022, 35, 1885-1899.	3.2	10
42	Atmospheric Circulation Sensitivity to Changes in the Vertical Structure of Polar Warming. Geophysical Research Letters, 2021, 48, e2021GL094726.	4.0	9
43	Distinct Surface Warming Response Over the Western and Eastern Equatorial Pacific to Radiative Forcing. Geophysical Research Letters, 2022, 49, .	4.0	9
44	Seasonal Dependence of the Effect of Arctic Greening on Tropical Precipitation. Journal of Climate, 2015, 28, 6086-6095.	3.2	8
45	Contrasting Tropical Climate Response Pattern to Localized Thermal Forcing Over Different Ocean Basins. Geophysical Research Letters, 2018, 45, 12,544.	4.0	8
46	How Does the High‣atitude Thermal Forcing in One Hemisphere Affect the Other Hemisphere?. Geophysical Research Letters, 2021, 48, .	4.0	8
47	CMIP6 Intermodel Spread in Interhemispheric Asymmetry of Tropical Climate Response to Greenhouse Warming: Extratropical Ocean Effects. Journal of Climate, 2022, , 1-49.	3.2	7
48	The Role of Clouds in Shaping Tropical Pacific Response Pattern to Extratropical Thermal Forcing. Geophysical Research Letters, 2022, 49, .	4.0	6
49	Reflections on the CLIVAR Early Career Scientists Symposium 2016. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	4
50	Mechanisms of tropical precipitation biases in climate models. Climate Dynamics, 2021, 56, 17-27.	3.8	4
51	The dependence of mean climate state on shortwave absorption by water vapor. Journal of Climate, 2022, , 1-54.	3.2	3
52	Disentangling the effect of regional SST bias on the double-ITCZ problem. Climate Dynamics, 2022, 58, 3441-3453.	3.8	3
53	Evolution of the Tropical Response to Periodic Extratropical Thermal Forcing. Journal of Climate, 2021, , 1-53.	3.2	2
54	Confronting Racism to Advance Our Science. AGU Advances, 2021, 2, e2020AV000296.	5.4	1

#	Article	IF	CITATIONS
55	Thank You to Our 2019 Reviewers. AGU Advances, 2020, 1, e2020AV000181.	5.4	Ο
56	AGU Advances Goes Online. AGU Advances, 2020, 1, e2019AV000105.	5.4	0
57	Thank You to Our 2020 Peer Reviewers. AGU Advances, 2021, 2, e2021AV000426.	5.4	0
58	Thank You to Our 2021 Peer Reviewers. AGU Advances, 2022, 3, .	5.4	0