## Sumio Ohtsuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9400149/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. Journal of Neurochemistry, 2011, 117, 333-345.                                                                                                                                                                                     | 3.9  | 683       |
| 2  | Quantitative Atlas of Membrane Transporter Proteins: Development and Application of a Highly<br>Sensitive Simultaneous LC/MS/MS Method Combined with Novel In-silico Peptide Selection Criteria.<br>Pharmaceutical Research, 2008, 25, 1469-1483.                                                                                     | 3.5  | 453       |
| 3  | Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nature Communications, 2017, 8, 291.                                                                                                                                                                             | 12.8 | 423       |
| 4  | Contribution of Carrier-Mediated Transport Systems to the Blood–Brain Barrier as a Supporting and<br>Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development.<br>Pharmaceutical Research, 2007, 24, 1745-1758.                                                                                          | 3.5  | 411       |
| 5  | Simultaneous Absolute Protein Quantification of Transporters, Cytochromes P450, and<br>UDP-Glucuronosyltransferases as a Novel Approach for the Characterization of Individual Human<br>Liver: Comparison with mRNA Levels and Activities. Drug Metabolism and Disposition, 2012, 40, 83-92.                                          | 3.3  | 373       |
| 6  | Transcriptomic and Quantitative Proteomic Analysis of Transporters and Drug Metabolizing Enzymes in Freshly Isolated Human Brain Microvessels. Molecular Pharmaceutics, 2011, 8, 1332-1341.                                                                                                                                           | 4.6  | 324       |
| 7  | A pericyteâ€derived angiopoietinâ€1 multimeric complex induces occludin gene expression in brain<br>capillary endothelial cells through Tieâ€2 activation <i>in vitro</i> . Journal of Neurochemistry, 2004,<br>89, 503-513.                                                                                                          | 3.9  | 299       |
| 8  | Quantitative Atlas of Blood–Brain Barrier Transporters, Receptors, and Tight Junction Proteins in<br>Rats and Common Marmoset. Journal of Pharmaceutical Sciences, 2013, 102, 3343-3355.                                                                                                                                              | 3.3  | 198       |
| 9  | Quantitative Membrane Protein Expression at the Blood–Brain Barrier of Adult and Younger<br>Cynomolgus Monkeys. Journal of Pharmaceutical Sciences, 2011, 100, 3939-3950.                                                                                                                                                             | 3.3  | 197       |
| 10 | Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a<br>uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. Journal of<br>Neurochemistry, 2002, 83, 57-66.                                                                                           | 3.9  | 196       |
| 11 | Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes and Development, 1998, 12, 547-556.                                                                                                                                                                                                   | 5.9  | 193       |
| 12 | Quantitative Targeted Absolute Proteomic Analysis of Transporters, Receptors and Junction Proteins<br>for Validation of Human Cerebral Microvascular Endothelial Cell Line hCMEC/D3 as a Human<br>Blood–Brain Barrier Model. Molecular Pharmaceutics, 2013, 10, 289-296.                                                              | 4.6  | 190       |
| 13 | A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for<br>inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker<br>proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Fluids and Barriers of the CNS, 2013,<br>10. 21. | 5.0  | 185       |
| 14 | The Blood–Brain Barrier Creatine Transporter is a Major Pathway for Supplying Creatine to the Brain.<br>Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1327-1335.                                                                                                                                                           | 4.3  | 161       |
| 15 | New approaches to in vitro models of blood–brain barrier drug transport. Drug Discovery Today,<br>2003, 8, 944-954.                                                                                                                                                                                                                   | 6.4  | 158       |
| 16 | Rat Organic Anion Transporter 3 (rOAT3) is Responsible for Brain-to-Blood Efflux of Homovanillic<br>Acid at the Abluminal Membrane of Brain Capillary Endothelial Cells. Journal of Cerebral Blood Flow<br>and Metabolism, 2003, 23, 432-440.                                                                                         | 4.3  | 151       |
| 17 | GAT2/BCT-1 as a System Responsible for the Transport of γ-Aminobutyric Acid at the Mouse Blood–Brain<br>Barrier. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1232-1239.                                                                                                                                                  | 4.3  | 150       |
| 18 | Simultaneous Absolute Quantification of 11 Cytochrome P450 Isoforms in Human Liver Microsomes by<br>Liquid Chromatography Tandem Mass Spectrometry with In Silico Target Peptide Selection. Journal of<br>Pharmaceutical Sciences, 2011, 100, 341-352.                                                                                | 3.3  | 150       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCKâ€Mi and CKâ€B<br>suggest a novel neuron–glial relationship for brain energy homeostasis. European Journal of<br>Neuroscience, 2004, 20, 144-160.                                                                                                                   | 2.6 | 149       |
| 20 | Conditionally Immortalized Retinal Capillary Endothelial Cell Lines (TR-iBRB) Expressing Differentiated<br>Endothelial Cell Functions Derived from a Transgenic Rat. Experimental Eye Research, 2001, 72, 163-172.                                                                                                                                          | 2.6 | 147       |
| 21 | GAGA mediates the enhancer blocking activity of the <i>eve</i> promoter in the <i>Drosophila</i> embryo. Genes and Development, 1998, 12, 3325-3330.                                                                                                                                                                                                        | 5.9 | 145       |
| 22 | Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. Journal of Cellular Physiology, 2007, 210, 81-86.                                                                                                                                                                                           | 4.1 | 144       |
| 23 | Functional expression of rat ABCC2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). Journal of Neurochemistry, 2004, 90, 526-536.                                                                                                                                                                       | 3.9 | 131       |
| 24 | Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney<br>International, 2002, 61, 1760-1768.                                                                                                                                                                                                                  | 5.2 | 128       |
| 25 | Blood-Brain Barrier Is Involved in the Efflux Transport of a Neuroactive Steroid,<br>Dehydroepiandrosterone Sulfate, via Organic Anion Transporting Polypeptide 2. Journal of<br>Neurochemistry, 2002, 75, 1907-1916.                                                                                                                                       | 3.9 | 127       |
| 26 | Quantitative Targeted Absolute Proteomics-Based Adme Research as A New Path to Drug Discovery and<br>Development: Methodology, Advantages, Strategy, and Prospects. Journal of Pharmaceutical Sciences,<br>2011, 100, 3547-3559.                                                                                                                            | 3.3 | 125       |
| 27 | Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. Journal of Neurochemistry, 2005, 95, 294-304.                                                                                                                                                                                                    | 3.9 | 121       |
| 28 | Absolute Quantification and Differential Expression of Drug Transporters, Cytochrome P450 Enzymes,<br>and UDP-Glucuronosyltransferases in Cultured Primary Human Hepatocytes. Drug Metabolism and<br>Disposition, 2012, 40, 93-103.                                                                                                                         | 3.3 | 121       |
| 29 | Blood-Brain Barrier (BBB) Pharmacoproteomics: Reconstruction of In Vivo Brain Distribution of 11<br>P-Glycoprotein Substrates Based on the BBB Transporter Protein Concentration, In Vitro Intrinsic<br>Transport Activity, and Unbound Fraction in Plasma and Brain in Mice. Journal of Pharmacology and<br>Experimental Therapeutics, 2011, 339, 579-588. | 2.5 | 116       |
| 30 | mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. Journal of Neurochemistry, 2008, 104, 147-154.                                                                                                                                                                  | 3.9 | 115       |
| 31 | Functional characterization of the brain-to-blood efflux clearance of human amyloid-β peptide (1–40)<br>across the rat blood–brain barrier. Neuroscience Research, 2006, 56, 246-252.                                                                                                                                                                       | 1.9 | 113       |
| 32 | Establishment of a new conditionally immortalized human brain microvascular endothelial cell line<br>retaining an in vivo blood–brain barrier function. Journal of Cellular Physiology, 2010, 225, 519-528.                                                                                                                                                 | 4.1 | 109       |
| 33 | Largeâ€scale multiplex absolute protein quantification of drugâ€metabolizing enzymes and transporters<br>in human intestine, liver, and kidney microsomes by SWATHâ€MS: Comparison with MRM/SRM and<br>HRâ€MRM/PRM. Proteomics, 2016, 16, 2106-2117.                                                                                                        | 2.2 | 109       |
| 34 | Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-α, taurine and<br>hypertonicity. Journal of Neurochemistry, 2002, 83, 1188-1195.                                                                                                                                                                                        | 3.9 | 105       |
| 35 | Insulin Facilitates the Hepatic Clearance of Plasma Amyloid β-Peptide (1–40) by Intracellular<br>Translocation of Low-Density Lipoprotein Receptor-Related Protein 1 (LRP-1) to the Plasma Membrane in<br>Hepatocytes. Molecular Pharmacology, 2007, 72, 850-855.                                                                                           | 2.3 | 105       |
| 36 | Aβ Immunotherapy: Intracerebral Sequestration of Aβ by an Anti-Aβ Monoclonal Antibody 266 with High<br>Affinity to Soluble Aβ. Journal of Neuroscience, 2009, 29, 11393-11398.                                                                                                                                                                              | 3.6 | 103       |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | mRNA Expression and Transport Characterization of Conditionally Immortalized Rat Brain Capillary<br>Endothelial Cell Lines; a New <i>in vitro</i> BBB Model for Drug Targeting. Journal of Drug Targeting,<br>2000, 8, 357-370.  | 4.4 | 102       |
| 38 | Peripheral nerve pericytes modify the blood–nerve barrier function and tight junctional molecules through the secretion of various soluble factors. Journal of Cellular Physiology, 2011, 226, 255-266.                          | 4.1 | 101       |
| 39 | Major Involvement of Low-Density Lipoprotein Receptor-Related Protein 1 in the Clearance of Plasma<br>Free Amyloid β-Peptide by the Liver. Pharmaceutical Research, 2006, 23, 1407-1416.                                         | 3.5 | 100       |
| 40 | MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharmaceutical Research, 2001, 18, 1669-1676.                             | 3.5 | 99        |
| 41 | Peripheral Nerve pericytes originating from the blood–nerve barrier expresses tight junctional<br>molecules and transporters as barrierâ€forming cells. Journal of Cellular Physiology, 2008, 217, 388-399.                      | 4.1 | 99        |
| 42 | The Low Density Lipoprotein Receptor-related Protein 1 Mediates Uptake of Amyloid β Peptides in an in<br>Vitro Model of the Blood-Brain Barrier Cells. Journal of Biological Chemistry, 2008, 283, 34554-34562.                  | 3.4 | 99        |
| 43 | Depletion of Vitamin E Increases Amyloid β Accumulation by Decreasing Its Clearances from Brain and<br>Blood in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 33400-33408.                     | 3.4 | 91        |
| 44 | Brain Insulin Impairs Amyloid-Â(1-40) Clearance from the Brain. Journal of Neuroscience, 2004, 24,<br>9632-9637.                                                                                                                 | 3.6 | 90        |
| 45 | Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9896-9905.                       | 7.1 | 90        |
| 46 | Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS ONE, 2018, 13, e0193799.                                                                       | 2.5 | 87        |
| 47 | Expression and regulation of L-cystine transporter, system xc?, in the newly developed rat retinal<br>M�ller cell line (TR-MUL). Glia, 2003, 43, 208-217.                                                                        | 4.9 | 85        |
| 48 | 1α,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-β peptide(1-40) from mouse<br>brain across the blood-brain barrier. Fluids and Barriers of the CNS, 2011, 8, 20.                                          | 5.0 | 85        |
| 49 | New Aspects of the Blood-Brain Barrier Transporters; Its Physiological Roles in the Central Nervous<br>System. Biological and Pharmaceutical Bulletin, 2004, 27, 1489-1496.                                                      | 1.4 | 84        |
| 50 | Major involvement of Na <sup>+</sup> â€dependent multivitamin transporter (SLC5A6/SMVT) in uptake of<br>biotin and pantothenic acid by human brain capillary endothelial cells. Journal of Neurochemistry,<br>2015, 134, 97-112. | 3.9 | 81        |
| 51 | Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. Journal of Neurochemistry, 2004, 90, 931-941.                                                                   | 3.9 | 80        |
| 52 | Effect of Intestinal Flora on Protein Expression of Drug-Metabolizing Enzymes and Transporters in<br>the Liver and Kidney of Germ-Free and Antibiotics-Treated Mice. Molecular Pharmaceutics, 2016, 13,<br>2691-2701.            | 4.6 | 80        |
| 53 | Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells.<br>Neuroscience Research, 2002, 44, 173-180.                                                                                | 1.9 | 76        |
| 54 | ldentification of IGFBP2 and IGFBP3 As Compensatory Biomarkers for CA19-9 in Early-Stage Pancreatic<br>Cancer Using a Combination of Antibody-Based and LC-MS/MS-Based Proteomics. PLoS ONE, 2016, 11,<br>e0161009.              | 2.5 | 76        |

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cerebral clearance of human amyloidâ€Î² peptide (1–40) across the blood–brain barrier is reduced by<br>selfâ€aggregation and formation of lowâ€density lipoprotein receptorâ€related proteinâ€1 ligand complexes.<br>Journal of Neurochemistry, 2007, 103, 2482-2490.   | 3.9  | 75        |
| 56 | Mouse Reduced in Osteosclerosis Transporter Functions as an Organic Anion Transporter 3 and Is<br>Localized at Abluminal Membrane of Blood-Brain Barrier. Journal of Pharmacology and Experimental<br>Therapeutics, 2004, 309, 1273-1281.                               | 2.5  | 74        |
| 57 | Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Scientific Reports, 2018, 8, 1253.                                                                                   | 3.3  | 73        |
| 58 | Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier:<br>An overview of biology and methodology. NeuroRx, 2005, 2, 63-72.                                                                                                   | 6.0  | 72        |
| 59 | Quantitative expression of human drug transporter proteins in lung tissues: Analysis of regional,<br>gender, and interindividual differences by liquid chromatography–tandem mass spectrometry. Journal<br>of Pharmaceutical Sciences, 2013, 102, 3395-3406.            | 3.3  | 72        |
| 60 | ATA2 Is Predominantly Expressed as System A at the Blood-Brain Barrier and Acts as Brain-to-Blood<br>Efflux Transport forl-Proline. Molecular Pharmacology, 2002, 61, 1289-1296.                                                                                        | 2.3  | 71        |
| 61 | ATP-Binding Cassette Transporter G2 Mediates the Efflux of Phototoxins on the Luminal Membrane of Retinal Capillary Endothelial Cells. Pharmaceutical Research, 2006, 23, 1235-1242.                                                                                    | 3.5  | 69        |
| 62 | Quantitative Determination of Luminal and Abluminal Membrane Distributions of Transporters in<br>Porcine Brain Capillaries by Plasma Membrane Fractionation and Quantitative Targeted Proteomics.<br>Journal of Pharmaceutical Sciences, 2015, 104, 3060-3068.          | 3.3  | 69        |
| 63 | Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism<br>in humans. Human Molecular Genetics, 2013, 22, 578-592.                                                                                                              | 2.9  | 68        |
| 64 | Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in<br>Multiple Sclerosis. Molecular Neurobiology, 2019, 56, 2039-2056.                                                                                                    | 4.0  | 66        |
| 65 | Function and regulation of taurine transport at the inner blood–retinal barrier. Microvascular<br>Research, 2007, 73, 100-106.                                                                                                                                          | 2.5  | 65        |
| 66 | SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nature Communications, 2018, 9, 2833.                                                                                                                                        | 12.8 | 65        |
| 67 | Rat Organic Anion Transporter 3 (rOAT3) Is Responsible for Brain-to-Blood Efflux of Homovanillic<br>Acid at the Abluminal Membrane of Brain Capillary Endothelial Cells. Journal of Cerebral Blood Flow<br>and Metabolism, 2003, , 432-440.                             | 4.3  | 64        |
| 68 | Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse<br>harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PharmSci, 2000, 2, 69-79.                                                           | 1.3  | 63        |
| 69 | In Vitro Study of the Functional Expression of Organic Anion Transporting Polypeptide 3 at Rat<br>Choroid Plexus Epithelial Cells and Its Involvement in the Cerebrospinal Fluid-to-Blood Transport of<br>Estrone-3-Sulfate. Molecular Pharmacology, 2003, 63, 532-537. | 2.3  | 63        |
| 70 | Internalization of basic fibroblast growth factor at the mouse blood-brain barrier involves perlecan,<br>a heparan sulfate proteoglycan. Journal of Neurochemistry, 2002, 83, 381-389.                                                                                  | 3.9  | 62        |
| 71 | Multichannel Liquid Chromatography–Tandem Mass Spectrometry Cocktail Method for<br>Comprehensive Substrate Characterization of Multidrug Resistance-Associated Protein 4 Transporter.<br>Pharmaceutical Research, 2007, 24, 2281-2296.                                  | 3.5  | 62        |
| 72 | Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell<br>lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid<br>barrier. Pharmaceutical Research, 2001, 18, 16-22.          | 3.5  | 61        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold<br>and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. Journal of Controlled<br>Release, 2019, 310, 36-46.                                                                                                                | 9.9 | 61        |
| 74 | The Blood???Brain Barrier Creatine Transporter Is a Major Pathway for Supplying Creatine to the Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1327-1335.                                                                                                                                                                                   | 4.3 | 60        |
| 75 | Human Platelets Express Organic Anion-Transporting Peptide 2B1, an Uptake Transporter for Atorvastatin. Drug Metabolism and Disposition, 2009, 37, 1129-1137.                                                                                                                                                                                              | 3.3 | 59        |
| 76 | 24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical-<br>and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCC1<br>expression. Journal of Neurochemistry, 2007, 100, 968-978.                                                                                               | 3.9 | 58        |
| 77 | The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier.<br>Journal of Neurochemistry, 2004, 87, 891-901.                                                                                                                                                                                                        | 3.9 | 57        |
| 78 | Enhancement of l-Cystine Transport Activity and Its Relation to xCT Gene Induction at the Blood-Brain<br>Barrier by Diethyl Maleate Treatment. Journal of Pharmacology and Experimental Therapeutics, 2002,<br>302, 225-231.                                                                                                                               | 2.5 | 55        |
| 79 | Reliability and Robustness of Simultaneous Absolute Quantification of Drug Transporters,<br>Cytochrome P450 Enzymes, and Udp-Glucuronosyltransferases in Human Liver Tissue by Multiplexed<br>MRM/Selected Reaction Monitoring Mode Tandem Mass Spectrometry with Nano-Liquid<br>Chromatography, Journal of Pharmaceutical Sciences, 2011, 100, 4037-4043. | 3.3 | 55        |
| 80 | Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. Journal of Neurochemistry, 2004, 90, 743-749.                                                                                                                                                                                 | 3.9 | 54        |
| 81 | Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochemistry International, 2007, 50, 95-101.                                                                                                                                                          | 3.8 | 53        |
| 82 | Blood-Brain Barrier Pharmacoproteomics-Based Reconstruction of the In Vivo Brain Distribution of<br>P-Glycoprotein Substrates in Cynomolgus Monkeys. Journal of Pharmacology and Experimental<br>Therapeutics, 2014, 350, 578-588.                                                                                                                         | 2.5 | 52        |
| 83 | ATP-binding cassette transporter A1 (ABCA1) deficiency does not attenuate the brain-to-blood efflux<br>transport of human amyloid-β peptide (1–40) at the blood–brain barrier. Neurochemistry International,<br>2008, 52, 956-961.                                                                                                                         | 3.8 | 50        |
| 84 | Tandem Mass Spectrometry Imaging Reveals Distinct Accumulation Patterns of Steroid Structural<br>Isomers in Human Adrenal Glands. Analytical Chemistry, 2019, 91, 8918-8925.                                                                                                                                                                               | 6.5 | 48        |
| 85 | A Prolyl Endopeptidase of Sarcophaga peregrina (Flesh Fly): Its Purification and Suggestion for Its<br>Participation in the Differentiation of the Imaginal Discs1. Journal of Biochemistry, 1994, 115, 449-453.                                                                                                                                           | 1.7 | 46        |
| 86 | Amyloidâ€Î² peptide(1â€40) elimination from cerebrospinal fluid involves lowâ€density lipoprotein<br>receptorâ€related protein 1 at the bloodâ€cerebrospinal fluid barrier. Journal of Neurochemistry, 2011,<br>118, 407-415.                                                                                                                              | 3.9 | 46        |
| 87 | Correlation of Induction of ATP Binding Cassette Transporter A5 (ABCA5) and ABCB1 mRNAs with<br>Differentiation State of Human Colon Tumor. Biological and Pharmaceutical Bulletin, 2007, 30,<br>1144-1146.                                                                                                                                                | 1.4 | 45        |
| 88 | The bloodâ€brain barrier fatty acid transport protein 1 ( <scp>FATP</scp> 1/ <scp>SLC</scp> 27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport. Journal of Neurochemistry, 2017, 141, 400-412.                                                                                                                            | 3.9 | 45        |
| 89 | Endothelial Cells Constituting Blood-nerve Barrier Have Highly Specialized Characteristics as<br>Barrier-forming Cells. Cell Structure and Function, 2007, 32, 139-147.                                                                                                                                                                                    | 1.1 | 44        |
| 90 | Expression of nuclear receptor mRNA and liver X receptor-mediated regulation of ABC transporter A1<br>at rat blood–brain barrier. Neurochemistry International, 2008, 52, 669-674.                                                                                                                                                                         | 3.8 | 43        |

| #   | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Recent advances in the brain-to-blood efflux transport across the blood–brain barrier. International Journal of Pharmaceutics, 2002, 248, 15-29.                                                                                                                                    | 5.2  | 42        |
| 92  | Functional characterization of Rat Plasma Membrane Monoamine Transporter in the Blood–Brain and<br>Blood–Cerebrospinal Fluid Barriers. Journal of Pharmaceutical Sciences, 2011, 100, 3924-3938.                                                                                    | 3.3  | 41        |
| 93  | cDNA Cloning of Mouse Prolyl Endopeptidase and Its Involvement in DNA Synthesis by Swiss 3T3 Cells.<br>Journal of Biochemistry, 1998, 123, 540-545.                                                                                                                                 | 1.7  | 40        |
| 94  | Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics. Journal of Proteomics, 2017, 158, 31-42.                                                                                       | 2.4  | 40        |
| 95  | Establishment of Conditionally Immortalized Rat Retinal Pericyte Cell Lines (TR-rPCT) and Their<br>Application in a Co-culture System Using Retinal Capillary Endothelial Cell Line (TR-iBRB2). Cell<br>Structure and Function, 2003, 28, 145-153.                                  | 1.1  | 39        |
| 96  | Lack of brainâ€toâ€blood efflux transport activity of lowâ€density lipoprotein receptorâ€related proteinâ€1<br>(LRPâ€1) for amyloidâ€Î² peptide(1–40) in mouse: involvement of an LRPâ€1â€independent pathway. Journal o<br>Neurochemistry, 2010, 113, 1356-1363.                   | f3.9 | 39        |
| 97  | Contribution of Pannexin 1 and Connexin 43 Hemichannels to Extracellular Calcium–Dependent<br>Transport Dynamics in Human Blood-Brain Barrier Endothelial Cells. Journal of Pharmacology and<br>Experimental Therapeutics, 2015, 353, 192-200.                                      | 2.5  | 39        |
| 98  | Induction of xCT gene expression and L-cystine transport activity by diethyl maleate at the inner blood-retinal barrier. Investigative Ophthalmology and Visual Science, 2002, 43, 774-9.                                                                                           | 3.3  | 39        |
| 99  | Dominant expression of androgen receptors and their functional regulation of organic anion transporter 3 in rat brain capillary endothelial cells; Comparison of gene expression between the blood-brain and -retinal barriers. Journal of Cellular Physiology, 2005, 204, 896-900. | 4.1  | 38        |
| 100 | Quantitative targeted proteomics for understanding the blood–brain barrier: towards pharmacoproteomics. Expert Review of Proteomics, 2014, 11, 303-313.                                                                                                                             | 3.0  | 38        |
| 101 | Quantitative Targeted Proteomics of Pancreatic Cancer: Deoxycytidine Kinase Protein Level Correlates to Progression-Free Survival of Patients Receiving Gemcitabine Treatment. Molecular Pharmaceutics, 2015, 12, 3282-3291.                                                        | 4.6  | 38        |
| 102 | Quantitative targeted absolute proteomics for 28 human transporters in plasma membrane of Caco-2<br>cell monolayer cultured for 2, 3, and 4Âweeks. Drug Metabolism and Pharmacokinetics, 2015, 30, 205-208.                                                                         | 2.2  | 38        |
| 103 | Brainâ€toâ€blood elimination of 24Sâ€hydroxycholesterol from rat brain is mediated by organic anion<br>transporting polypeptide 2 (oatp2) at the blood–brain barrier. Journal of Neurochemistry, 2007, 103,<br>1430-1438.                                                           | 3.9  | 37        |
| 104 | Validation of uPA/SCID Mouse with Humanized Liver as a Human Liver Model: Protein Quantification of<br>Transporters, Cytochromes P450, and UDP-Glucuronosyltransferases by LC-MS/MS. Drug Metabolism<br>and Disposition, 2014, 42, 1039-1043.                                       | 3.3  | 37        |
| 105 | Blood-brain barrier transport of a novel Âμ1-specific opioid peptide, H-Tyr-d-Arg-Phe-β-Ala-OH (TAPA).<br>Journal of Neurochemistry, 2003, 84, 1154-1161.                                                                                                                           | 3.9  | 35        |
| 106 | A Novel Relationship Between Creatine Transport at the Blood-Brain and Blood-Retinal Barriers,<br>Creatine Biosynthesis, And its Use for Brain and Retinal Energy Homeostasis. , 2007, 46, 83-98.                                                                                   |      | 35        |
| 107 | mRNA Expression of the ATP-Binding Cassette Transporter Subfamily A (ABCA) in Rat and Human Brain<br>Capillary Endothelial Cells. Biological and Pharmaceutical Bulletin, 2004, 27, 1437-1440.                                                                                      | 1.4  | 34        |
| 108 | Beneficial Effects of Estrogen in a Mouse Model of Cerebrovascular Insufficiency. PLoS ONE, 2009, 4, e5159.                                                                                                                                                                         | 2.5  | 34        |

| #   | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Involvement of Multidrug Resistance-Associated Protein 4 in Efflux Transport of Prostaglandin<br>E <sub>2</sub> across Mouse Blood-Brain Barrier and Its Inhibition by Intravenous Administration of<br>Cephalosporins. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 912-919.  | 2.5  | 33        |
| 110 | Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in<br>lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole. Fluids and<br>Barriers of the CNS, 2011, 8, 24.                                                                       | 5.0  | 33        |
| 111 | Establishing a Method to Isolate Rat Brain Capillary Endothelial Cells by Magnetic Cell Sorting and<br>Dominant mRNA Expression of Multidrug Resistance-associated Protein 1 and 4 in Highly Purified Rat<br>Brain Capillary Endothelial Cells. Pharmaceutical Research, 2007, 24, 688-694.         | 3.5  | 32        |
| 112 | Expression of ABC-type transport proteins in human platelets. Pharmacogenetics and Genomics, 2010, 20, 396-400.                                                                                                                                                                                     | 1.5  | 32        |
| 113 | High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of<br>Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of<br>Cynomolgus Monkey and Human. Molecular Pharmaceutics, 2018, 15, 127-140.                           | 4.6  | 32        |
| 114 | Quantitative Targeted Absolute Proteomics-Based Large-Scale Quantification of Proline-Hydroxylated<br>α-Fibrinogen in Plasma for Pancreatic Cancer Diagnosis. Journal of Proteome Research, 2013, 12, 753-762.                                                                                      | 3.7  | 31        |
| 115 | Regulation of Tight-Junction Integrity by Insulin in an InÂVitro Model of Human Blood–Brain Barrier.<br>Journal of Pharmaceutical Sciences, 2017, 106, 2599-2605.                                                                                                                                   | 3.3  | 31        |
| 116 | Oxidative stress-induced activation of Abl and Src kinases rapidly induces P-glycoprotein<br>internalization via phosphorylation of caveolin-1 on tyrosine-14, decreasing cortisol efflux at the<br>blood–brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 420-436.          | 4.3  | 31        |
| 117 | Novel cyclic peptides facilitating transcellular blood-brain barrier transport of macromolecules in vitro and in vivo. Journal of Controlled Release, 2020, 321, 744-755.                                                                                                                           | 9.9  | 30        |
| 118 | Acidic Amino Acid Transport Characteristics of a Newly Developed Conditionally Immortalized Rat<br>Type 2 Astrocyte Cell Line (TR-AST) Cell Structure and Function, 2001, 26, 197-203.                                                                                                              | 1.1  | 29        |
| 119 | Molecular-weight-dependent, Anionic-substrate-preferential Transport of β-Lactam Antibiotics via<br>Multidrug Resistance-associated Protein 4. Drug Metabolism and Pharmacokinetics, 2011, 26, 602-611.                                                                                             | 2.2  | 29        |
| 120 | Involvement of Insulin-Degrading Enzyme in Insulin- and Atrial Natriuretic Peptide-Sensitive<br>Internalization of Amyloid-I <sup>2</sup> Peptide in Mouse Brain Capillary Endothelial Cells. Journal of Alzheimer's<br>Disease, 2013, 38, 185-200.                                                 | 2.6  | 29        |
| 121 | Pharmacoproteomics-Based Reconstruction of In Vivo P-Glycoprotein Function at Blood-Brain Barrier and Brain Distribution of Substrate Verapamil in Pentylenetetrazole-Kindled Epilepsy, Spontaneous Epilepsy, and Phenytoin Treatment Models. Drug Metabolism and Disposition, 2014, 42, 1719-1726. | 3.3  | 29        |
| 122 | Changes of Blood-Brain Barrier and Brain Parenchymal Protein Expression Levels of Mice under<br>Different Insulin-Resistance Conditions Induced by High-Fat Diet. Pharmaceutical Research, 2019, 36,<br>141.                                                                                        | 3.5  | 29        |
| 123 | Modulation and Compensation of the mRNA Expression of Energy Related Transporters in the Brain of<br>Glucose Transporter 1-Deficient Mice. Biological and Pharmaceutical Bulletin, 2006, 29, 1587-1591.                                                                                             | 1.4  | 28        |
| 124 | A new in vitro model for blood?cerebrospinal fluid barrier transport studies: an immortalized<br>choroid plexus epithelial cell line derived from the tsA58 SV40 large T-antigen gene transgenic rat.<br>Advanced Drug Delivery Reviews, 2004, 56, 1875-1885.                                       | 13.7 | 27        |
| 125 | Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain. Journal of Neurochemistry, 2005, 92, 1277-1280.                                                                                                                                     | 3.9  | 27        |
| 126 | Reduction of L-Type Amino Acid Transporter 1 mRNA Expression in Brain Capillaries in a Mouse Model of Parkinson's Disease. Biological and Pharmaceutical Bulletin, 2010, 33, 1250-1252.                                                                                                             | 1.4  | 27        |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | mRNA Expression and Amino Acid Transport Characteristics of Cultured Human Brain Microvascular<br>Endothelial Cells (hBME). Drug Metabolism and Pharmacokinetics, 2002, 17, 367-373.                                                                                    | 2.2 | 23        |
| 128 | Attenuation of Phosphorylation by Deoxycytidine Kinase is Key to Acquired Gemcitabine Resistance in a<br>Pancreatic Cancer Cell Line: Targeted Proteomic and Metabolomic Analyses in PK9 Cells.<br>Pharmaceutical Research, 2012, 29, 2006-2016.                        | 3.5 | 23        |
| 129 | Identification of Transporters Associated with Etoposide Sensitivity of Stomach Cancer Cell Lines and<br>Methotrexate Sensitivity of Breast Cancer Cell Lines by Quantitative Targeted Absolute Proteomics.<br>Molecular Pharmacology, 2013, 83, 490-500.               | 2.3 | 23        |
| 130 | ATP-Binding Cassette Transporter A Subfamily 8 Is a Sinusoidal Efflux Transporter for Cholesterol and Taurocholate in Mouse and Human Liver. Molecular Pharmaceutics, 2018, 15, 343-355.                                                                                | 4.6 | 23        |
| 131 | Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. Journal of Controlled Release, 2017, 262, 232-238.                                                                           | 9.9 | 22        |
| 132 | Nuclear Localization and Involvement in DNA Synthesis of Sarcophaga Prolyl Endopeptidase. Journal of Biochemistry, 1997, 121, 1176-1181.                                                                                                                                | 1.7 | 21        |
| 133 | Characterization of P-Glycoprotein Humanized Mice Generated by Chromosome Engineering<br>Technology: Its Utility for Prediction of Drug Distribution to the Brain in Humans. Drug Metabolism<br>and Disposition, 2018, 46, 1756-1766.                                   | 3.3 | 21        |
| 134 | ls P-glycoprotein Involved in Amyloid-β Elimination Across the Blood–Brain Barrier in Alzheimer's<br>Disease?. Clinical Pharmacology and Therapeutics, 2010, 88, 443-445.                                                                                               | 4.7 | 20        |
| 135 | Establishment and characterization of spinal cord microvascular endothelial cell lines. Clinical and Experimental Neuroimmunology, 2013, 4, 326-338.                                                                                                                    | 1.0 | 20        |
| 136 | Actin filamentâ€associated protein 1 (AFAPâ€1) is a key mediator in inflammatory signalingâ€induced rapid<br>attenuation of intrinsic Pâ€gp function in human brain capillary endothelial cells. Journal of<br>Neurochemistry, 2017, 141, 247-262.                      | 3.9 | 20        |
| 137 | Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation<br>Mediated by Inter-Chain VH-VL Interactions. Molecules, 2019, 24, 2620.                                                                                                | 3.8 | 20        |
| 138 | Mass Spectrometry-Compatible Subcellular Fractionation for Proteomics. Journal of Proteome<br>Research, 2020, 19, 75-84.                                                                                                                                                | 3.7 | 20        |
| 139 | Gelsolin inhibits malignant phenotype of glioblastoma and is regulated by miRâ€654â€5p and miRâ€450bâ€5p.<br>Cancer Science, 2020, 111, 2413-2422.                                                                                                                      | 3.9 | 20        |
| 140 | Quantitative Targeted Absolute Proteomics for 28 Transporters in Brush-Border and Basolateral<br>Membrane Fractions of Rat Kidney. Journal of Pharmaceutical Sciences, 2016, 105, 1011-1016.                                                                            | 3.3 | 19        |
| 141 | Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 370-387.                                                                                                                                           | 5.0 | 19        |
| 142 | Blood-Brain Barrier Permeability of Novel [d-Arg2]Dermorphin (1-4) Analogs: Transport Property Is<br>Related to the Slow Onset of Antinociceptive Activity in the Central Nervous System. Journal of<br>Pharmacology and Experimental Therapeutics, 2004, 310, 177-184. | 2.5 | 18        |
| 143 | Atrial Natriuretic Peptide is Eliminated from the Brain by Natriuretic Peptide Receptor-C-Mediated Brain-to-Blood Efflux Transport at the Blood—Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 457-466.                                        | 4.3 | 18        |
| 144 | Large-Scale Quantitative Comparison of Plasma Transmembrane Proteins between Two Human<br>Blood–Brain Barrier Model Cell Lines, hCMEC/D3 and HBMEC/ciβ. Molecular Pharmaceutics, 2019, 16,<br>2162-2171.                                                                | 4.6 | 18        |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers.<br>Drug Metabolism and Pharmacokinetics, 2021, 36, 100361.                                                                                                          | 2.2 | 18        |
| 146 | Metformin ameliorates the severity of experimental Alport syndrome. Scientific Reports, 2021, 11, 7053.                                                                                                                                                                   | 3.3 | 18        |
| 147 | Vascular EndotheliumSelective Gene Induction by Tie2 Promoter/Enhancer in the Brain and Retina of a<br>Transgenic Rat. Pharmaceutical Research, 2005, 22, 852-857.                                                                                                        | 3.5 | 17        |
| 148 | Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based<br>Reconstruction of P-Clycoprotein Function in Mouse Small Intestine. Molecular Pharmaceutics, 2016,<br>13, 2443-2456.                                                            | 4.6 | 17        |
| 149 | Lactose-appended β-cyclodextrin as an effective nanocarrier for brain delivery. Journal of Controlled Release, 2020, 328, 722-735.                                                                                                                                        | 9.9 | 17        |
| 150 | PKC/MAPK signaling suppression by retinal pericyte conditioned medium prevents retinal endothelial cell proliferation. Journal of Cellular Physiology, 2005, 203, 378-386.                                                                                                | 4.1 | 16        |
| 151 | Contributions of Degradation and Brain-to-blood Elimination Across the Blood—Brain Barrier to<br>Cerebral Clearance of Human Amyloid-β Peptide(1-40) in Mouse Brain. Journal of Cerebral Blood Flow<br>and Metabolism, 2013, 33, 1770-1777.                               | 4.3 | 16        |
| 152 | Selective gene silencing of rat ATP-binding cassette G2 transporter in an in vitro blood-brain barrier model by short interfering RNA. Journal of Neurochemistry, 2005, 93, 63-71.                                                                                        | 3.9 | 15        |
| 153 | 6-Mercaptopurine Transport by Equilibrative Nucleoside Transporters in Conditionally Immortalized<br>Rat Syncytiotrophoblast Cell Lines TR-TBTs. Journal of Pharmaceutical Sciences, 2011, 100, 3773-3782.                                                                | 3.3 | 15        |
| 154 | A simplified and sensitive method to identify Alzheimer's disease biomarker candidates using<br>patient-derived induced pluripotent stem cells (iPSCs). Journal of Biochemistry, 2017, 162, 391-394.                                                                      | 1.7 | 15        |
| 155 | Gene therapy for <i>Glut1</i> â€deficient mouse using an adenoâ€associated virus vector with the human<br>intrinsic GLUT1 promoter. Journal of Gene Medicine, 2018, 20, e3013.                                                                                            | 2.8 | 15        |
| 156 | In-vitro acetylation of SARS-CoV and SARS-CoV-2 nucleocapsid proteins by human PCAF and GCN5.<br>Biochemical and Biophysical Research Communications, 2021, 557, 273-279.                                                                                                 | 2.1 | 15        |
| 157 | Efficient isolation of brain capillary from a single frozen mouse brain for protein expression analysis.<br>Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1026-1038.                                                                                           | 4.3 | 14        |
| 158 | All-trans retinoic acid enhances gemcitabine cytotoxicity in human pancreatic cancer cell line AsPC-1<br>by up-regulating protein expression of deoxycytidine kinase. European Journal of Pharmaceutical<br>Sciences, 2017, 103, 116-121.                                 | 4.0 | 13        |
| 159 | Leucine-Rich Alpha-2-Glycoprotein 1 in Serum Is a Possible Biomarker to Predict Response to<br>Preoperative Chemoradiotherapy for Esophageal Cancer. Biological and Pharmaceutical Bulletin, 2019,<br>42, 1766-1771.                                                      | 1.4 | 13        |
| 160 | Identification of a Specific Translational Machinery via TCTP–EF1A2 Interaction Regulating<br>NF1-associated Tumor Growth by Affinity Purification and Data-independent Mass Spectrometry<br>Acquisition (AP-DIA)*. Molecular and Cellular Proteomics, 2019, 18, 245-262. | 3.8 | 13        |
| 161 | Gene therapy for a mouse model of glucose transporter-1 deficiency syndrome. Molecular Genetics and Metabolism Reports, 2017, 10, 67-74.                                                                                                                                  | 1.1 | 12        |
| 162 | Involvement of an Orphan Transporter, SLC22A18, in Cell Growth and Drug Resistance of Human<br>Breast Cancer MCF7 Cells. Journal of Pharmaceutical Sciences, 2018, 107, 3163-3170.                                                                                        | 3.3 | 12        |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Identification of Cell-Surface Proteins Endocytosed by Human Brain Microvascular Endothelial Cells<br>In Vitro. Pharmaceutics, 2020, 12, 579.                                                                                                                                          | 4.5 | 12        |
| 164 | SHOC2 Is a Critical Modulator of Sensitivity to EGFR–TKIs in Non–Small Cell Lung Cancer Cells.<br>Molecular Cancer Research, 2021, 19, 317-328.                                                                                                                                        | 3.4 | 12        |
| 165 | Molecular cloning of cDNA for Sarcophaga prolyl endopeptidase and characterization of the<br>recombinant enzyme produced by an E. coli expression system. Insect Biochemistry and Molecular<br>Biology, 1997, 27, 337-343.                                                             | 2.7 | 11        |
| 166 | Recurrent anaplastic meningioma treated by sunitinib based on results from quantitative proteomics.<br>Neuropathology and Applied Neurobiology, 2012, 38, 105-110.                                                                                                                     | 3.2 | 11        |
| 167 | Design and synthesis of a novel pre-column derivatization reagent with a 6-methoxy-4-quinolone moiety for fluorescence and tandem mass spectrometric detection and its application to chiral amino acid analysis. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 71-79. | 2.8 | 11        |
| 168 | Abnormal <i>N</i> -Glycosylation of a Novel Missense Creatine Transporter Mutant, G561R,<br>Associated with Cerebral Creatine Deficiency Syndromes Alters Transporter Activity and Localization.<br>Biological and Pharmaceutical Bulletin, 2017, 40, 49-55.                           | 1.4 | 11        |
| 169 | Oral Coadministration of Zn-Insulin with <scp>d</scp> -Form Small Intestine-Permeable Cyclic Peptide<br>Enhances Its Blood Glucose-Lowering Effect in Mice. Molecular Pharmaceutics, 2021, 18, 1593-1603.                                                                              | 4.6 | 11        |
| 170 | Recent Progress in Blood–Brain Barrier and Blood–CSF Barrier Transport Research: Pharmaceutical<br>Relevance for Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, 2014, ,<br>23-62.                                                                    | 0.6 | 11        |
| 171 | Influenza virus replication raises the temperature of cells. Virus Research, 2018, 257, 94-101.                                                                                                                                                                                        | 2.2 | 10        |
| 172 | Transporter mRNA Expression in a Conditionally Immortalized Rat Small Intestine Epithelial Cell Line<br>(TR-SIE). Drug Metabolism and Pharmacokinetics, 2004, 19, 264-269.                                                                                                             | 2.2 | 9         |
| 173 | Knockdown of Orphan Transporter SLC22A18 Impairs Lipid Metabolism and Increases Invasiveness of<br>HepG2 Cells. Pharmaceutical Research, 2019, 36, 39.                                                                                                                                 | 3.5 | 9         |
| 174 | The Multipotential of Leucine-Rich Î $\pm$ -2 Glycoprotein 1 as a Clinicopathological Biomarker of Glioblastoma. Journal of Neuropathology and Experimental Neurology, 2020, 79, 873-879.                                                                                              | 1.7 | 9         |
| 175 | Acetylation of the influenza A virus polymerase subunit PA in the Nâ€ŧerminal domain positively<br>regulates its endonuclease activity. FEBS Journal, 2022, 289, 231-245.                                                                                                              | 4.7 | 9         |
| 176 | Effect of Insulin Receptor-Knockdown on the Expression Levels of Blood–Brain Barrier Functional<br>Proteins in Human Brain Microvascular Endothelial Cells. Pharmaceutical Research, 2022, 39, 1561-1574.                                                                              | 3.5 | 9         |
| 177 | Retinal selectivity of gene expression in rat retinal versus brain capillary endothelial cell lines by differential display analysis. Molecular Vision, 2004, 10, 537-43.                                                                                                              | 1.1 | 9         |
| 178 | Proteomic analysis of small intestinal epithelial cells in antibiotic-treated mice: Changes in drug transporters and metabolizing enzymes. Drug Metabolism and Pharmacokinetics, 2019, 34, 159-162.                                                                                    | 2.2 | 8         |
| 179 | Comparison of venous and fingertip plasma using non-targeted proteomics and metabolomics. Talanta, 2019, 192, 182-188.                                                                                                                                                                 | 5.5 | 8         |
| 180 | Laminin Subunit Alpha-4 and Osteopontin Are Glioblastoma-Selective Secreted Proteins That Are<br>Increased in the Cerebrospinal Fluid of Glioblastoma Patients. Journal of Proteome Research, 2020, 19,<br>3542-3553.                                                                  | 3.7 | 8         |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Application of Quantitative Targeted Absolute Proteomics to Profile Protein Expression Changes of<br>Hepatic Transporters and Metabolizing Enzymes During Cholic Acid-Promoted Liver Regeneration.<br>Journal of Pharmaceutical Sciences, 2017, 106, 2499-2508.       | 3.3 | 7         |
| 182 | Cyclocreatine Transport by SLC6A8, the Creatine Transporter, in HEK293 Cells, a Human Blood-Brain<br>Barrier Model Cell, and CCDSs Patient-Derived Fibroblasts. Pharmaceutical Research, 2020, 37, 61.                                                                | 3.5 | 7         |
| 183 | Transient, Tunable Expression of NTCP and BSEP in MDCKII Cells for Kinetic Delineation of the<br>Rate-Determining Process and Inhibitory Effects of Rifampicin in Hepatobiliary Transport of<br>Taurocholate. Journal of Pharmaceutical Sciences, 2021, 110, 365-375. | 3.3 | 7         |
| 184 | Water Droplet-in-Oil Digestion Method for Single-Cell Proteomics. Analytical Chemistry, 2022, 94, 10329-10336.                                                                                                                                                        | 6.5 | 6         |
| 185 | Scrambled Internal Standard Method for High-Throughput Protein Quantification by Matrix-Assisted<br>Laser Desorption Ionization Tandem Mass Spectrometry. Journal of Proteome Research, 2017, 16,<br>1556-1565.                                                       | 3.7 | 5         |
| 186 | Targeted Proteomics-Based Quantitative Protein Atlas of Pannexin and Connexin Subtypes in Mouse and Human Tissues and Cancer Cell Lines. Journal of Pharmaceutical Sciences, 2020, 109, 1161-1168.                                                                    | 3.3 | 5         |
| 187 | Nicotine promotes angiogenesis in mouse brain after intracerebral hemorrhage. Neuroscience<br>Research, 2021, 170, 284-294.                                                                                                                                           | 1.9 | 5         |
| 188 | Proteomic Evaluation of Plasma Membrane Fraction Prepared from a Mouse Liver and Kidney Using a<br>Bead Homogenizer: Enrichment of Drug-Related Transporter Proteins. Molecular Pharmaceutics, 2020,<br>17, 4101-4113.                                                | 4.6 | 5         |
| 189 | Advances in sample preparation for membrane proteome quantification. Drug Discovery Today:<br>Technologies, 2021, 39, 23-29.                                                                                                                                          | 4.0 | 5         |
| 190 | Effects of differences in pre-analytical processing on blood protein profiles determined with SWATH-MS. Journal of Proteomics, 2020, 223, 103824.                                                                                                                     | 2.4 | 5         |
| 191 | Combining Genomics To Identify the Pathways of Post-Transcriptional Nongenotoxic Signaling and<br>Energy Homeostasis in Livers of Rats Treated with the Pregnane X Receptor Agonist, Pregnenolone<br>Carbonitrile. Journal of Proteome Research, 2017, 16, 3634-3645. | 3.7 | 4         |
| 192 | Assessing cytochrome P450-based drug-drug interactions with hemoglobin-vesicles, an artificial red blood cell preparation, in healthy rats. Drug Metabolism and Pharmacokinetics, 2020, 35, 425-431.                                                                  | 2.2 | 4         |
| 193 | Convenient method of producing cyclic single-chain Fv antibodies by split-intein-mediated protein ligation and chaperone co-expression. Journal of Biochemistry, 2020, 168, 257-263.                                                                                  | 1.7 | 3         |
| 194 | Diurnal Changes in Protein Expression at the Blood–Brain Barrier in Mice. Biological and<br>Pharmaceutical Bulletin, 2022, 45, 751-756.                                                                                                                               | 1.4 | 3         |
| 195 | Human Immortalized Cell-Based Blood–Brain Barrier Spheroid Models Offer an Evaluation Tool for<br>the Brain Penetration Properties of Macromolecules. Molecular Pharmaceutics, 0, , .                                                                                 | 4.6 | 3         |
| 196 | Evaluation of cytochrome P450-based drug metabolism in hemorrhagic shock rats that were<br>transfused with native and an artificial red blood cell preparation, Hemoglobin-vesicles. Drug<br>Metabolism and Pharmacokinetics, 2020, 35, 417-424.                      | 2.2 | 2         |
| 197 | Blood–Brain Barrier (BBB) Pharmacoproteomics: A New Research Field Opened Up by Quantitative<br>Targeted Absolute Proteomics (QTAP). AAPS Advances in the Pharmaceutical Sciences Series, 2014, ,<br>63-100.                                                          | 0.6 | 2         |
| 198 | Targeted proteomics for cancer biomarker verification and validation. Cancer Biomarkers, 2022, 33, 427-436.                                                                                                                                                           | 1.7 | 2         |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Cerebral clearance of human amyloid-β peptide (1–40) across the blood-brain barrier is reduced by complex formation of activated α2-macroglobulin. Neuroscience Research, 2007, 58, S116.                                                                 | 1.9 | 1         |
| 200 | Effect of changes in intestinal flora induced by short-term antibiotics administration on the pharmacokinetics of drugs, and glucose and lipid metabolism. Drug Metabolism and Pharmacokinetics, 2018, 33, S56.                                           | 2.2 | 1         |
| 201 | Urate Transport <i>via</i> Paracellular Route across Epithelial Cells. Biological and Pharmaceutical<br>Bulletin, 2019, 42, 43-49.                                                                                                                        | 1.4 | 1         |
| 202 | Abstract 3081: SHOC2 is a critical modulator of the sensitivity to EGFR-TKI in non-small cell lung cancer cells. , 2020, , .                                                                                                                              |     | 1         |
| 203 | The Physiological Function of the Blood-Brain Barrier Transporters as the CNS Supporting and Protecting System. ChemInform, 2005, 36, no.                                                                                                                 | 0.0 | 0         |
| 204 | Physiological pharmacokinetics and membrane transport for drug delivery research. International<br>Congress Series, 2005, 1284, 266-273.                                                                                                                  | 0.2 | 0         |
| 205 | CS-25 * MOLECULAR SUBCLASSIFICATION OF GLIOBLASTOMA BASED ON THE ABSOLUTE QUANTITATIVE PROTEOMICS. Neuro-Oncology, 2014, 16, v56-v56.                                                                                                                     | 1.2 | 0         |
| 206 | Front cover: Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and<br>transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with<br>MRM/SRM and HR-MRM/PRM. Proteomics, 2016, 16, NA-NA. | 2.2 | 0         |
| 207 | Elucidation of Permeation Molecular Mechanism of New Small Intestine Permeable Peptides. Impact, 2019, 2019, 73-75.                                                                                                                                       | 0.1 | 0         |
| 208 | CBMT-18. THE ROLE OF BIOMARKER CANDIDATE GELSOLIN AND ITS MICRORNAS IN GLIOBLASTOMA.<br>Neuro-Oncology, 2019, 21, vi36-vi37.                                                                                                                              | 1.2 | 0         |
| 209 | Proteomics Analysis of Lymphatic Metastasis-Related Proteins Using Highly Metastatic Human<br>Melanoma Cells Originated by Sequential <i>in Vivo</i> Implantation. Biological and<br>Pharmaceutical Bulletin, 2021, 44, 1551-1556.                        | 1.4 | 0         |
| 210 | Blood-Brain Barrier Transport and Drug Targeting to the Brain. , 2002, , 313-326.                                                                                                                                                                         |     | 0         |
| 211 | New in vitro model for the brain drug delivery research: Conditionally immortalized cell lines as<br>novel models of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Drug<br>Delivery System, 2003, 18, 118-125.             | 0.0 | 0         |
| 212 | Drug delivery system based on transport characteristics of biological membranes Molecular<br>mechanisms of blood-brain barrier transport system and its contribution to drug delivery to the<br>brain. Drug Delivery System, 2006, 21, 102-110.           | 0.0 | 0         |
| 213 | Molecular characterization of urate transport via paracellular route Proceedings for Annual<br>Meeting of the Japanese Pharmacological Society, 2019, 92, 1-P-111.                                                                                        | 0.0 | 0         |
| 214 | Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier:<br>An overview of biology and methodology. Neurotherapeutics, 2005, 2, 63-72.                                                                           | 4.4 | 0         |
| 215 | Knockdown of Podocalyxin Post-Transcriptionally Induces the Expression and Activity of ABCB1/MDR1<br>in Human Brain Microvascular Endothelial Cells. Journal of Pharmaceutical Sciences, 2022, , .                                                        | 3.3 | 0         |
|     |                                                                                                                                                                                                                                                           |     |           |