Jaroslawna Meister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9399911/publications.pdf

Version: 2024-02-01

933447 996975 17 325 10 15 citations g-index h-index papers 17 17 17 542 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nature Communications, 2016, 7, 10268.	12.8	7 5
2	A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways. Journal of Biological Chemistry, 2016, 291, 7809-7820.	3.4	29
3	The G protein-coupled receptor GPR34 – The past 20†years of a grownup. , 2018, 189, 71-88.		29
4	Functional Selectivity of a Biased Cannabinoid-1 Receptor (CB ₁ R) Antagonist. ACS Pharmacology and Translational Science, 2021, 4, 1175-1187.	4.9	29
5	Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annual Review of Pharmacology and Toxicology, 2021, 61, 421-440.	9.4	26
6	Selective activation of Gs signaling in adipocytes causes striking metabolic improvements in mice. Molecular Metabolism, 2019, 27, 83-91.	6.5	25
7	Skeletal Muscle–Specific Activation of Gq Signaling Maintains Glucose Homeostasis. Diabetes, 2019, 68, 1341-1352.	0.6	18
8	\hat{l}^2 -arrestin-1 suppresses myogenic reprogramming of brown fat to maintain euglycemia. Science Advances, 2020, 6, eaba1733.	10.3	15
9	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	12.8	15
10	$\hat{l}^2\text{-Arrestins}$ as Important Regulators of Glucose and Energy Homeostasis. Annual Review of Physiology, 2022, 84, 17-40.	13.1	14
11	Metabolic effects of skeletal muscle-specific deletion of beta-arrestin-1 and -2 in mice. PLoS Genetics, 2019, 15, e1008424.	3.5	13
12	\hat{l}^2 -Arrestin-1 is required for adaptive \hat{l}^2 -cell mass expansion during obesity. Nature Communications, 2021, 12, 3385.	12.8	13
13	Chemogenetic approaches to identify metabolically important GPCR signaling pathways: Therapeutic implications. Journal of Neurochemistry, 2021, 158, 603-620.	3.9	8
14	Key Metabolic Functions of \hat{l}^2 -Arrestins: Studies with Novel Mouse Models. Trends in Endocrinology and Metabolism, 2021, 32, 118-129.	7.1	7
15	InÂvivo metabolic effects after acute activation of skeletal muscle Gs signaling. Molecular Metabolism, 2022, 55, 101415.	6.5	5
16	Exercise increases phosphorylation of the putative mTORC2 activity readout NDRG1 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E63-E73.	3.5	4
17	Chronic Beta2â€Adrenergic Receptor Stimulation Improves Wholeâ€Body Glucose Homeostasis through Skeletal Muscle Metabolic Reprogramming. FASEB Journal, 2018, 32, 533.43.	0.5	0