Franck E. Dayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/939903/publications.pdf Version: 2024-02-01

		31976	39675
201	11,031	53	94
papers	citations	h-index	g-index
212	212	212	8183
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<scp>2,4â€D</scp> and <scp>2,4â€D</scp> butoxyethyl ester behavior in <scp>E</scp> urasian and hybrid watermilfoil (<i>Myriophyllum</i> spp.). Pest Management Science, 2022, 78, 626-632.	3.4	1
2	The search for new herbicide mechanisms of action: Is there a â€~holy grail'?. Pest Management Science, 2022, 78, 1303-1313.	3.4	49
3	Low Temperature Delays Metabolism of Quizalofop in Resistant Winter Wheat and Three Annual Grass Weed Species. Frontiers in Agronomy, 2022, 3, .	3.3	5
4	Biochemical and structural characterization of quizalofop-resistant wheat acetyl-CoA carboxylase. Scientific Reports, 2022, 12, 679.	3.3	7
5	An in-frame deletion mutation in the degron tail of auxin coreceptor <i>IAA2</i> confers resistance to the herbicide 2,4-D in <i>Sisymbrium orientale</i> Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
6	Transgenerational Effect of Drought Stress and Sub-Lethal Doses of Quizalofop-p-ethyl: Decreasing Sensitivity to Herbicide and Biochemical Adjustment in Eragrostis plana. Agriculture (Switzerland), 2022, 12, 396.	3.1	8
7	ACCase-inhibiting herbicides: mechanism of action, resistance evolution and stewardship. Scientia Agricola, 2021, 78, .	1.2	54
8	Absorption and Metabolism of Foliar-Applied Rimsulfuron in Potato (Solanum tuberosum L.), Common Lambsquarters (Chenopodium album L.) and Redroot Pigweed (Amaranthus retroflexus L.). Potato Research, 2021, 64, 635-648.	2.7	4
9	The Sorghum bicolor Root Exudate Sorgoleone Shapes Bacterial Communities and Delays Network Formation. MSystems, 2021, 6, .	3.8	23
10	Field Response of Green Ash (Fraxinus pennsylvanica) and Honey Locust (Gleditsia triacanthos) to Aminocyclopyrachlor1. Journal of Environmental Horticulture, 2021, 39, 68-76.	0.5	1
11	The Source of Rag5-Mediated Resistance to Soybean Aphids Is Located in the Stem. Frontiers in Plant Science, 2021, 12, 689986.	3.6	4
12	Biochemical Basis for the Time-of-Day Effect on Glufosinate Efficacy against Amaranthus palmeri. Plants, 2021, 10, 2021.	3.5	5
13	The Coaxium [®] Wheat Production System: A New Herbicide-Resistant System for Annual Grass Weed Control and Integrated Weed Management. Outlooks on Pest Management, 2021, 32, 151-157.	0.2	4
14	A novel TIPT double mutation in <i>EPSPS</i> conferring glyphosate resistance in tetraploid <i>Bidens subalternans</i> . Pest Management Science, 2020, 76, 95-102.	3.4	26
15	Conservation and divergence in sorgoleone production of sorghum species. Journal of Environmental Quality, 2020, 49, 368-377.	2.0	3
16	Trp2027Cys mutation evolves in Digitaria insularis with cross-resistance to ACCase inhibitors. Pesticide Biochemistry and Physiology, 2020, 164, 1-6.	3.6	27
17	Evolution of EPSPS double mutation imparting glyphosate resistance in wild poinsettia (Euphorbia) Tj ETQq1 1 (0.784314 i 2.5	rgBŢ /Overloo
18	A Trp574Leu Target-Site Mutation Confers Imazamox Resistance in Multiple Herbicide-Resistant Wild	3.0	11

Poinsettia Populations from Brazil. Agronomy, 2020, 10, 1057.

#	Article	IF	CITATIONS
19	Conformation of the Intermediates in the Reaction Catalyzed by Protoporphyrinogen Oxidase: An In Silico Analysis. International Journal of Molecular Sciences, 2020, 21, 9495.	4.1	5
20	Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295, 10307-10330.	3.4	329
21	A novel insight into the mode of action of glufosinate: how reactive oxygen species are formed. Photosynthesis Research, 2020, 144, 361-372.	2.9	30
22	Glufosinate enhances the activity of protoporphyrinogen oxidase inhibitors. Weed Science, 2020, 68, 324-332.	1.5	31
23	Arg-128-Leu target-site mutation in <i>PPO2</i> evolves in wild poinsettia (<i>Euphorbia) Tj ETQq1 1 0.784314</i>	rgBT/Ove 1.5	rlo <u>ck</u> 10 Tf 5
24	Glufosinateâ€ammonium: a review of the current state of knowledge. Pest Management Science, 2020, 76, 3911-3925.	3.4	119
25	Discovery for New Herbicide Sites of Action by Quantification of Plant Primary Metabolite and Enzyme Pools. Engineering, 2020, 6, 509-514.	6.7	32
26	Physiological Factors Affecting Uptake and Translocation of Glufosinate. Journal of Agricultural and Food Chemistry, 2020, 68, 3026-3032.	5.2	14
27	Cinmethylin controls multiple herbicideâ€resistant <i>Lolium rigidum</i> and its wheat selectivity is P450â€based. Pest Management Science, 2020, 76, 2601-2608.	3.4	28
28	The Contribution of Romidepsin to the Herbicidal Activity of <i>Burkholderia rinojensis</i> Biopesticide. Journal of Natural Products, 2020, 83, 843-851.	3.0	12
29	Sorghum Allelopathy for Sustainable Weed Management. Progress in Biological Control, 2020, , 263-288.	0.5	4
30	Metabolism-Based Herbicide Resistance, the Major Threat Among the Non-Target Site Resistance Mechanisms. Outlooks on Pest Management, 2020, 31, 162-168.	0.2	30
31	Herbicide Mechanisms of Action and Resistance. , 2019, , 36-48.		22
32	The influence of winter annual grass litter on herbicide availability. Weed Science, 2019, 67, 702-709.	1.5	12
33	Current Status and Future Prospects in Herbicide Discovery. Plants, 2019, 8, 341.	3.5	133
34	Fate of Glyphosate during Production and Processing of Glyphosate-Resistant Sugar Beet (<i>Beta) Tj ETQq0 0 C</i>) rgBT /Ove	erlock 10 Tf 5
35	Role of Glutamine Synthetase Isogenes and Herbicide Metabolism in the Mechanism of Resistance to Glufosinate in <i>Lolium perenne</i> L. spp. <i>multiflorum</i> Biotypes from Oregon. Journal of Agricultural and Food Chemistry, 2019, 67, 8431-8440.	5.2	45

³⁶Predicting herbicide movement across semi-permeable membranes using three phase partitioning.3.6836Pesticide Biochemistry and Physiology, 2019, 159, 22-26.3.68

#	Article	IF	CITATIONS
37	Reactive oxygen species trigger the fast action of glufosinate. Planta, 2019, 249, 1837-1849.	3.2	67
38	Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation. Weed Science, 2019, 67, 149-175.	1.5	62
39	Interactions Between Natural Herbicides and Lipid Bilayers Mimicking the Plant Plasma Membrane. Frontiers in Plant Science, 2019, 10, 329.	3.6	18
40	Assessment of the ecotoxicological impact of natural and synthetic Î ² -triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of the Total Environment, 2019, 651, 241-249.	8.0	28
41	Proline-106 EPSPS Mutation Imparting Glyphosate Resistance in Goosegrass (<i>Eleusine indica</i>) Emerges in South America. Weed Science, 2019, 67, 48-56.	1.5	25
42	Assessing Fitness Costs from a Herbicide-Resistance Management Perspective: A Review and Insight. Weed Science, 2019, 67, 137-148.	1.5	26
43	A novel genomic approach to herbicide and herbicide mode of action discovery. Pest Management Science, 2019, 75, 314-317.	3.4	36
44	Pesticides Modes of Action and Resistance: A Perspective from the 2019 IUPAC Congress. Outlooks on Pest Management, 2019, 30, 157-163.	0.2	16
45	A cytochrome P450 <scp>CYP</scp> 71 enzyme expressed in <i>Sorghum bicolor</i> root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. New Phytologist, 2018, 218, 616-629.	7.3	28
46	Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide. Environmental Science and Pollution Research, 2018, 25, 29848-29859.	5.3	3
47	Reversing resistance to tembotrione in an <scp><i>Amaranthus tuberculatus</i></scp> (var.) Tj ETQq1 1 0.7843 Science, 2018, 74, 2296-2305.	314 rgBT / 3.4	Overlock 10 56
48	Introduction to Pest Management Science special issue for GHRC 2017. Pest Management Science, 2018, 74, 2209-2210.	3.4	1
49	Origins and structure of chloroplastic and mitochondrial plant protoporphyrinogen oxidases: implications for the evolution of herbicide resistance. Pest Management Science, 2018, 74, 2226-2234.	3.4	65
50	Natural Product-Based Chemical Herbicides. , 2018, , 153-165.		6
51	Is There a Natural Route to the Next Generation of Herbicides?. Outlooks on Pest Management, 2018, 29, 54-57.	0.2	11
52	A (–)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. Journal of Experimental Botany, 2017, 68, 1109-1122.	4.8	28
53	Allelopathic Potential of Sorghum (Sorghum bicolor (L.) Moench) in Weed Control: A Comprehensive Review. Advances in Agronomy, 2017, 145, 43-95.	5.2	45
54	Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils. Frontiers in Microbiology, 2016, 7, 775.	3.5	31

#	Article	IF	CITATIONS
55	Khellin and Visnagin, Furanochromones from <i>Ammi visnaga</i> (L.) Lam., as Potential Bioherbicides. Journal of Agricultural and Food Chemistry, 2016, 64, 9475-9487.	5.2	43
56	Glyphosate-Resistant and Conventional Canola (<i>Brassica napus</i> L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment. Journal of Agricultural and Food Chemistry, 2016, 64, 3508-3513.	5.2	18
57	Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink® and WideStrike® cotton. Planta, 2016, 243, 925-933.	3.2	27
58	Environmental Metabolic Footprinting: A novel application to study the impact of a natural and a synthetic β-triketone herbicide in soil. Science of the Total Environment, 2016, 566-567, 552-558.	8.0	19
59	Low doses of glyphosate change the responses of soyabean to subsequent glyphosate treatments. Weed Research, 2016, 56, 124-136.	1.7	34
60	Nortriketones: Antimicrobial Trimethylated Acylphloroglucinols from Malnuka (<i>Leptospermum) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf : 27
61	Sarmentine, a natural herbicide from Piper species with multiple herbicide mechanisms of action. Frontiers in Plant Science, 2015, 6, 222.	3.6	38
62	Discovery of New Herbicide Modes of Action with Natural Phytotoxins. ACS Symposium Series, 2015, , 79-92.	0.5	16
63	Possible Glyphosate Tolerance Mechanism in Pitted Morningglory (<i>Ipomoea lacunosa</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 1689-1697.	5.2	24
64	Biochemical Markers and Enzyme Assays for Herbicide Mode of Action and Resistance Studies. Weed Science, 2015, 63, 23-63.	1.5	113
65	Photolysis of natural β-triketonic herbicides inÂwater. Water Research, 2015, 78, 28-36.	11.3	20
66	<i>EPSPS</i> Gene Amplification in Glyphosate-Resistant Italian Ryegrass (<i>Lolium perenne</i> ssp.) Tj ETQqO Chemistry, 2015, 63, 5885-5893.	0 0 rgBT / 5.2	Overlock 10 35
67	Metabolic Profiling and Enzyme Analyses Indicate a Potential Role of Antioxidant Systems in Complementing Glyphosate Resistance in an <i>Amaranthus palmeri</i> Biotype. Journal of Agricultural and Food Chemistry, 2015, 63, 9199-9209.	5.2	58
68	Concerted action of targetâ€site mutations and high <scp>EPSPS</scp> activity in glyphosateâ€resistant junglerice (<i>Echinochloa colona</i>) from California. Pest Management Science, 2015, 71, 996-1007.	3.4	53
69	The Growing Need for Biochemical Bioherbicides. ACS Symposium Series, 2014, , 31-43.	0.5	8
70	Evolution of resistance to phytoene desaturase and protoporphyrinogen oxidase inhibitors–Âstate of knowledge. Pest Management Science, 2014, 70, 1358-1366.	3.4	47
71	Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Management Science, 2014, 70, 252-257.	3.4	49
72	Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri. Planta, 2014, 239, 199-212.	3.2	42

#	Article	IF	CITATIONS
73	Roots of the Invasive Species Carduus nutans L. and C. acanthoides L. Produce Large Amounts of Aplotaxene, a Possible Allelochemical. Journal of Chemical Ecology, 2014, 40, 276-284.	1.8	11
74	Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Applied Microbiology and Biotechnology, 2014, 98, 7243-7252.	3.6	27
75	Natural Compounds as Next-Generation Herbicides. Plant Physiology, 2014, 166, 1090-1105.	4.8	270
76	Novel Bioassay for the Discovery of Inhibitors of the 2-C-Methyl-D-erythritol 4-Phosphate (MEP) and Terpenoid Pathways Leading to Carotenoid Biosynthesis. PLoS ONE, 2014, 9, e103704.	2.5	15
77	In planta Mechanism of Action of Leptospermone: Impact of Its Physico-Chemical Properties on Uptake, Translocation, and Metabolism. Journal of Chemical Ecology, 2013, 39, 262-270.	1.8	40
78	Clues to New Herbicide Mechanisms of Action from Natural Sources. ACS Symposium Series, 2013, , 203-215.	0.5	16
79	Insight into the Structural Requirements of Protoporphyrinogen Oxidase Inhibitors: Molecular Docking and CoMFA of Diphenyl Ether, Isoxazole Phenyl, and Pyrazole Phenyl Ether. Chinese Journal of Chemistry, 2013, 31, 1153-1158.	4.9	10
80	Phytochemicals for Pest Management: Current Advances and Future Opportunities. , 2013, , 71-94.		3
81	Simulated Acid Rain Accelerates Litter Decomposition and Enhances the Allelopathic Potential of the Invasive Plant <i>Wedelia trilobata</i> (Creeping Daisy). Weed Science, 2012, 60, 462-467.	1.5	27
82	Natural Products As Sources for New Pesticides. Journal of Natural Products, 2012, 75, 1231-1242.	3.0	457
83	Tabanone, a New Phytotoxic Constituent of Cogongrass (<i>Imperata cylindrica</i>). Weed Science, 2012, 60, 212-218.	1.5	26
84	Oligofructans content and yield of yacon (Smallanthus sonchifolius) cultivated in Mississippi. Scientia Horticulturae, 2012, 148, 83-88.	3.6	10
85	Rationale for a natural products approach to herbicide discovery. Pest Management Science, 2012, 68, 519-528.	3.4	166
86	<i>EPSPS</i> gene amplification in glyphosateâ€resistant Italian ryegrass (<i>Lolium perenne</i> ssp.) Tj ETQq0	0 g.rgBT	/Overlock 10⊺ 149
87	Validation of serine/threonine protein phosphatase as the herbicide target site of endothall. Pesticide Biochemistry and Physiology, 2012, 102, 38-44.	3.6	36
88	Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology, 2012, 102, 189-197.	3.6	124
89	<i>In planta</i> production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and <i>O</i> â€methyltransferase coâ€expression. Plant Biotechnology Journal, 2012, 10, 269-283.	8.3	46
90	Modes of Action of Microbially-Produced Phytotoxins. Toxins, 2011, 3, 1038-1064.	3.4	96

#	Article	IF	CITATIONS
91	Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pesticide Biochemistry and Physiology, 2011, 100, 41-50.	3.6	31
92	Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pesticide Biochemistry and Physiology, 2011, 101, 182-190.	3.6	66
93	Manuka Oil, A Natural Herbicide with Preemergence Activity. Weed Science, 2011, 59, 464-469.	1.5	69
94	Porphyrins: One Ring in the Colors of Life. American Scientist, 2011, 99, 236.	0.1	26
95	Evaluation of the toxicity of Streptomyces aburaviensis (R9) extract towards various agricultural pests. Agricultural Sciences, 2011, 02, 491-497.	0.3	1
96	Natural Products for Weed Management in Organic Farming in the USA. Outlooks on Pest Management, 2010, 21, 156-160.	0.2	28
97	Sorgoleone. Phytochemistry, 2010, 71, 1032-1039.	2.9	120
98	Biochemical and structural consequences of a glycine deletion in the α-8 helix of protoporphyrinogen oxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1548-1556.	2.3	57
99	Herbicides as Probes in Plant Biology. Weed Science, 2010, 58, 340-350.	1.5	58
100	Alkylresorcinol Synthases Expressed in <i>Sorghum bicolor</i> Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone Â. Plant Cell, 2010, 22, 867-887.	6.6	97
101	Alkylresorcinol biosynthesis in plants. Plant Signaling and Behavior, 2010, 5, 1286-1289.	2.4	43
102	Protoporphyrinogen Oxidase-Inhibiting Herbicides. , 2010, , 1733-1751.		50
103	Synthesis and antitubercular activity of heterocycle substituted diphenyl ether derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 730-736.	5.2	17
104	Introduction to the Symposium on Nonherbicide Use of Herbicides. Weed Science, 2010, 58, 323-323.	1.5	0
105	The case against (–)-catechin involvement in allelopathy of <i>Centaurea stoebe</i> (spotted) Tj ETQq1 1 0.78	34314.rgB 2.4	T /Overlock 1 21
106	Dynamic root exudation of sorgoleone and its in planta mechanism of action. Journal of Experimental Botany, 2009, 60, 2107-2117.	4.8	94
107	Is (â^')-Catechin a Novel Weapon of Spotted Knapweed (Centaurea stoebe)?. Journal of Chemical Ecology, 2009, 35, 141-153.	1.8	77
108	Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives. European Journal of Medicinal Chemistry, 2009, 44, 492-500.	5.5	83

#	Article	IF	CITATIONS
109	Natural products in crop protection. Bioorganic and Medicinal Chemistry, 2009, 17, 4022-4034.	3.0	909
110	β-Triketone Inhibitors of Plant <i>p</i> -Hydroxyphenylpyruvate Dioxygenase: Modeling and Comparative Molecular Field Analysis of Their Interactions. Journal of Agricultural and Food Chemistry, 2009, 57, 5194-5200.	5.2	34
111	Mineralization of the allelochemical sorgoleone in soil. Chemosphere, 2009, 76, 1041-1047.	8.2	43
112	Biological Activity of Allelochemicals. , 2009, , 361-384.		26
113	Amicarbazone, a New Photosystem II Inhibitor. Weed Science, 2009, 57, 579-583.	1.5	49
114	The majority of in vitro macrophage activation exhibited by extracts of some immune enhancing botanicals is due to bacterial lipoproteins and lipopolysaccharides. International Immunopharmacology, 2008, 8, 1023-1032.	3.8	65
115	A Pathogenic Fungi Diphenyl Ether Phytotoxin Targets Plant Enoyl (Acyl Carrier Protein) Reductase. Plant Physiology, 2008, 147, 1062-1071.	4.8	41
116	A Functional Genomics Investigation of Allelochemical Biosynthesis in Sorghum bicolor Root Hairs. Journal of Biological Chemistry, 2008, 283, 3231-3247.	3.4	88
117	NATURAL PRODUCTS FOR PEST MANAGEMENT. , 2007, , 209-251.		2
118	Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. Journal of Experimental Botany, 2007, 58, 3263-3272.	4.8	37
119	BIOCONTROL OF WEEDS WITH ALLELOPATHY: CONVENTIONAL AND TRANSGENIC APPROACHES. , 2007, , 75-85.		14
120	Phytotoxic Eremophilanes from Ligularia macrophylla. Journal of Agricultural and Food Chemistry, 2007, 55, 10656-10663.	5.2	29
121	Molecular and Biochemical Characterization of Novel Polyketide Synthases Likely to Be Involved in the Biosynthesis of Sorgoleone. ACS Symposium Series, 2007, , 141-151.	0.5	1
122	p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry, 2007, 68, 2004-2014.	2.9	100
123	Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway. Phytochemistry, 2007, 68, 1872-1881.	2.9	44
124	Molecular and Biochemical Investigations of Sorgoleone Biosynthesis. Recent Advances in Phytochemistry, 2006, 40, 157-177.	0.5	1
125	Characterization of a higher plant herbicide-resistant phytoene desaturase and its use as a selectable marker. Plant Biotechnology Journal, 2006, 4, 263-273.	8.3	44
126	A Functional Genomics Approach for the Identification of Genes Involved in the Biosynthesis of the Allelochemical Sorgoleone. ACS Symposium Series, 2006, , 265-276.	0.5	7

#	Article	IF	CITATIONS
127	Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta, 2006, 224, 339-346.	3.2	102
128	Clues in the search for new herbicides. , 2006, , 63-83.		11
129	The potential for advances in crop allelopathy. Outlooks on Pest Management, 2005, 16, 64-68.	0.2	9
130	Hydrilla, the Perfect Aquatic Weed, Becomes More Noxious Than Ever. Outlooks on Pest Management, 2005, 16, 277-282.	0.2	13
131	Generation of reactive oxygen species by a novel anthraquinone derivative in the cyanobacterium Planktothrix perornata (Skuja). Pesticide Biochemistry and Physiology, 2005, 81, 198-207.	3.6	12
132	Chemistry of the Lichen Hypogymnia physodes Transplanted to an Industrial Region. Journal of Chemical Ecology, 2005, 31, 2975-2991.	1.8	68
133	Molecular evolution of herbicide resistance to phytoene desaturase inhibitors inHydrilla verticillata and its potential use to generate herbicide-resistant crops. Pest Management Science, 2005, 61, 258-268.	3.4	44
134	Patterns of essential oil relationships in Pimpinella (Umbelliferae) based on phylogenetic relationships using nuclear and chloroplast sequences. Plant Genetic Resources: Characterisation and Utilisation, 2005, 3, 149-169.	0.8	34
135	Chemical Basis for Weed Suppressive Activity of Sorghum. ACS Symposium Series, 2005, , 59-70.	0.5	4
136	Composition and Phytotoxic Activity ofNepeta pannonicaL. Essential Oil. Journal of Essential Oil Research, 2005, 17, 704-707.	2.7	16
137	Melanin: dietary mucosal immune modulator from Echinacea and other botanical supplements. International Immunopharmacology, 2005, 5, 637-647.	3.8	50
138	Molluscicidal activity of vulgarone B fromArtemisia douglasiana(Besser) against the invasive, alien, mollusc pest,Pomacea canaliculata(Lamarck). International Journal of Pest Management, 2005, 51, 175-180.	1.8	21
139	Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Molecular Ecology, 2004, 13, 3229-3237.	3.9	120
140	Physiological basis for resistance to diphenyl ether herbicides in common waterhemp (Amaranthus) Tj ETQq0 0	0 rg <u>B</u> T /Ov	verlack 10 Tf 5
141	Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.). Plant Science, 2004, 166, 23-29.	3.6	24
142	New Herbicide Target Sites from Natural Compounds. ACS Symposium Series, 2004, , 151-160.	0.5	3
143	Podophyllum peltatum possesses aÂî²-glucosidase with high substrate specificity for the aryltetralin lignan podophyllotoxin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1646, 157-163.	2.3	12
144	United States Department of Agriculture-Agricultural Research Service research on natural products for pest management. Pest Management Science, 2003, 59, 708-717.	3.4	66

#	Article	IF	CITATIONS
145	PSII Inhibitory Activity of Resorcinolic Lipids from Sorghum bicolor. Journal of Natural Products, 2003, 66, 42-45.	3.0	36
146	Activity of Quinones onColletotrichumSpecies. Journal of Agricultural and Food Chemistry, 2003, 51, 3824-3828.	5.2	84
147	Trichomes and root hairs: natural pesticide factories. Outlooks on Pest Management, 2003, 14, 175.	0.2	30
148	Chromatographic Separation andin VitroActivity of Sorgoleone Congeners from the Roots of Sorghum bicolor. Journal of Agricultural and Food Chemistry, 2003, 51, 7589-7595.	5.2	67
149	Elucidation of the Biosynthetic Pathway of the Allelochemical Sorgoleone Using Retrobiosynthetic NMR Analysis. Journal of Biological Chemistry, 2003, 278, 28607-28611.	3.4	72
150	Bioactivation of the Fungal Phytotoxin 2,5-Anhydro-D-glucitol by Glycolytic Enzymesisan Essential Component of itsMechanism of Action. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 645-653.	1.4	9
151	Invited Paper:â€,Chemicals from nature for weed management. Weed Science, 2002, 50, 138-151.	1.5	233
152	Octan-1-ol / Water Partition Coefficients of <i>p</i> -benzo-and <i>p</i> -naphthoquinones corrected for pH effect. Journal of Chemical Research, 2002, 2002, 518-519.	1.3	6
153	The lignans of Podophyllum. Studies in Natural Products Chemistry, 2002, 26, 149-182.	1.8	21
154	Physiological factors influencing the antifungal activity of zopfiellin. Pesticide Biochemistry and Physiology, 2002, 73, 87-93.	3.6	22
155	The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry, 2002, 60, 281-288.	2.9	166
156	Phytotoxicity and volatile constituents from leaves of Callicarpa japonica Thunb Phytochemistry, 2002, 61, 37-40.	2.9	41
157	Composition of the essential oil of Lepidium meyenii (Walp.). Phytochemistry, 2002, 61, 149-155.	2.9	52
158	Aryltetralin Lignans Inhibit Plant Growth by Affecting the Formation of Mitotic Microtubular Organizing Centers. Pesticide Biochemistry and Physiology, 2002, 72, 45-54.	3.6	57
159	Structural Diversity of Lichen Metabolites and Their Potential Use. , 2002, , 151-169.		23
160	Bioactivation of the fungal phytotoxin 2,5-anhydro-D-glucitol by glycolytic enzymes is an essential component of its mechanism of action. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 645-53.	1.4	2
161	Mode of Action, Localization of Production, Chemical Nature, and Activity of Sorgoleone: A Potent PSII Inhibitor in Sorghum spp. Root Exudates1. Weed Technology, 2001, 15, 813-825.	0.9	186
162	Phytotoxic and Fungitoxic Activities of the Essential Oil of Kenaf (Hibiscus cannabinusL.) Leaves and Its Composition. Journal of Agricultural and Food Chemistry, 2001, 49, 3768-3771.	5.2	80

#	Article	IF	CITATIONS
163	Synthesis, Herbicidal Activity, and Mode of Action of IR 5790. Journal of Agricultural and Food Chemistry, 2001, 49, 2302-2307.	5.2	13
164	Lichens as a potential source of pesticides. Outlooks on Pest Management, 2001, 12, 229-232.	0.2	63
165	Searching for Rice Allelochemicals. Agronomy Journal, 2001, 93, 16-20.	1.8	122
166	Strategies for Using Transgenes to Produce Allelopathic Crops1. Weed Technology, 2001, 15, 826-834.	0.9	61
167	High Yield of Podophyllotoxin from Leaves of Podophyllum peltatum by In situ Conversion of Podophyllotoxin 4-O-l²-D-Glucopyranoside. Planta Medica, 2001, 67, 97-99.	1.3	60
168	Chapter Twelve Crop Allelopathy: Enhancement through biotechnology. Recent Advances in Phytochemistry, 2001, , 257-274.	0.5	8
169	Protoporphyrinogen Oxidase Inhibitors. , 2001, , 1529-1541.		2
170	9,10â€Anthraquinone Reduces the Photosynthetic Efficiency ofOscillatoria perornataand Modifies Cellular Inclusions. International Journal of Plant Sciences, 2000, 161, 265-270.	1.3	22
171	Predicting the activity of the natural phytotoxic diphenyl ether cyperine using Comparative Molecular Field Analysis. Pest Management Science, 2000, 56, 717-722.	3.4	13
172	Natural products as sources of herbicides: current status and future trends. Weed Research, 2000, 40, 99-111.	1.7	369
173	Podophyllotoxin. Phytochemistry, 2000, 54, 115-120.	2.9	360
174	Allelopathic Effects of Volatile Cineoles on Two Weedy Plant Species. Journal of Chemical Ecology, 2000, 26, 303-313.	1.8	228
175	Investigating the Mode of Action of Natural Phytotoxins. Journal of Chemical Ecology, 2000, 26, 2079-2094.	1.8	246
176	Behavior of sulfentrazone in ionic exchange resins, electrophoresis gels, and cation-saturated soils. Weed Science, 2000, 48, 239-247.	1.5	40
177	Inhibition of Plant Asparagine Synthetase by Monoterpene Cineoles. Plant Physiology, 2000, 123, 725-732.	4.8	73
178	Natural products as sources for new mechanisms of herbicidal action. Crop Protection, 2000, 19, 583-589.	2.1	152
179	The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plantp-hydroxyphenylpyruvate dioxygenase. FEBS Letters, 2000, 480, 301-305.	2.8	99
180	Composition and Some Biological Activities of the Essential Oil ofCallicarpaamericana(L.). Journal of Agricultural and Food Chemistry, 2000, 48, 3008-3012.	5.2	74

#	Article	IF	CITATIONS
181	Measuring Asparagine Synthetase Activity in Crude Plant Extracts. Journal of Agricultural and Food Chemistry, 2000, 48, 1692-1696.	5.2	18
182	Amino- and Urea-Substituted Thiazoles Inhibit Photosynthetic Electron Transfer. Journal of Agricultural and Food Chemistry, 2000, 48, 3689-3693.	5.2	25
183	Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry, 1999, 50, 607-614.	2.9	92
184	Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry, 1999, 52, 805-813.	2.9	93
185	Phytotoxicity of Quassinoids: Physiological Responses and Structural Requirements. Pesticide Biochemistry and Physiology, 1999, 65, 15-24.	3.6	45
186	Phytotoxic lignans ofLeucophyllum frutescens. Natural Toxins, 1999, 7, 39-43.	1.0	33
187	Joint action of natural and synthetic photosystem II inhibitors. Pest Management Science, 1999, 55, 137-146.	0.4	40
188	Thiol-dependent degradation of protoporphyrin IX by plant peroxidases. FEBS Letters, 1999, 444, 227-230.	2.8	21
189	Glutathione-Dependent Oxidative Modification of Protoporphyrin and Other Dicarboxylic Porphyrins by Mammalian and Plant Peroxidases. Biochemical and Biophysical Research Communications, 1999, 259, 195-200.	2.1	7
190	Structure-Activity Relationships of Diphenyl Ethers and Other Oxygen-Bridged Protoporphyrinogen Oxidase Inhibitors. , 1999, , 141-161.		9
191	Phytotoxic lignans of Leucophyllum frutescens. Natural Toxins, 1999, 7, 39-43.	1.0	1
192	A New Photosystem II Electron Transfer Inhibitor from Sorghum bicolor. Journal of Natural Products, 1998, 61, 927-930.	3.0	118
193	A New Photosystem II Electron Transfer Inhibitor fromSorghum Bicolor. Journal of Natural Products, 1998, 61, 1456-1456.	3.0	10
194	Horseradish Peroxidase-Dependent Oxidation of Deuteroporphyrin IX into Chlorins. Archives of Biochemistry and Biophysics, 1998, 351, 27-34.	3.0	13
195	Inhibitory Activity of Sulfentrazone and Its Metabolic Derivatives on Soybean (Glycine max) Protoporphyrinogen Oxidase. Journal of Agricultural and Food Chemistry, 1998, 46, 2024-2029.	5.2	32
196	Effects of Isoxazole Herbicides on Protoporphyrinogen Oxidase and Porphyrin Physiology. Journal of Agricultural and Food Chemistry, 1997, 45, 967-975.	5.2	46
197	Selectivity and mode of action of carfentrazone-ethyl, a novel phenyl triazolinone herbicide. Pest Management Science, 1997, 51, 65-73.	0.4	69
198	Oxidation of Porphyrinogens by Horseradish Peroxidase and Formation of a Green Pyrrole Pigment. Biochemical and Biophysical Research Communications, 1996, 227, 195-199.	2.1	16

#	Article	IF	CITATIONS
199	Physiological Basis for Differential Sensitivity to Sulfentrazone by Sicklepod (<i>Senna) Tj ETQq1 1 0.784314 rgBT</i>	/Overlock 1.5	10 Tf 50 7
200	Postemergence Activity of Sulfentrazone: Effects of Surfactants and Leaf Surfaces. Weed Science, 1996, 44, 797-803.	1.5	56
201	Natural Phytotoxins with Potential for Development in Weed Management Strategies. , 0, , 143-154.		0