Mika Tapio Tarkka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9398059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	21.4	870
2	The mycorrhiza helper bacteria revisited. New Phytologist, 2007, 176, 22-36.	7.3	778
3	Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiology and Molecular Biology Reviews, 2011, 75, 583-609.	6.6	694
4	Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4, 440-452.	9.3	303
5	Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytologist, 2005, 168, 205-216.	7.3	157
6	Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek, 2008, 94, 11-19.	1.7	154
7	Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505. Applied and Environmental Microbiology, 2006, 72, 3550-3557.	3.1	153
8	Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME Journal, 2012, 6, 2291-2301.	9.8	109
9	Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist, 2008, 177, 965-976.	7.3	103
10	<i>Streptomyces</i> -Induced Resistance Against Oak Powdery Mildew Involves Host Plant Responses in Defense, Photosynthesis, and Secondary Metabolism Pathways. Molecular Plant-Microbe Interactions, 2014, 27, 891-900.	2.6	101
11	OakContig <scp>DF</scp> 159.1, a reference library for studying differential gene expression in <i>Quercus robur</i> during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytologist, 2013, 199, 529-540.	7.3	97
12	Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Current Genetics, 2009, 55, 233-243.	1.7	95
13	Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes. BMC Microbiology, 2012, 12, 164.	3.3	78
14	Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytologist, 2007, 174, 892-903.	7.3	77
15	Insights into organohalide respiration and the versatile catabolism of <scp><i>S</i></scp> <i>ulfurospirillum multivorans</i> gained from comparative genomics and physiological studies. Environmental Microbiology, 2014, 16, 3562-3580.	3.8	76
16	Genome sequences of two dehalogenation specialists <i>- Dehalococcoides mccartyi</i> strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiology Letters, 2013, 343, 101-104.	1.8	73
17	Glucose dehydrogenase gene containing phosphobacteria for biofortification of Phosphorus with growth promotion of rice. Microbiological Research, 2019, 223-225, 1-12.	5.3	59
18	Rhizosphere Spatiotemporal Organization–A Key to Rhizosphere Functions. Frontiers in Agronomy, 2020, 2, .	3.3	54

Μικά Τάριο Τάγκκα

#	Article	IF	CITATIONS
19	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
20	The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics, 2015, 16, 112.	2.8	49
21	Experimental platforms for the investigation of spatiotemporal patterns inÂthe rhizosphere—Laboratory and field scale. Journal of Plant Nutrition and Soil Science, 2021, 184, 35-50.	1.9	49
22	Basidiomycetous Yeasts from Boletales Fruiting Bodies and Their Interactions with the Mycoparasite Sepedonium chrysospermum and the Host Fungus Paxillus. Microbial Ecology, 2012, 63, 295-303.	2.8	42
23	Characterization of Small GTPases Cdc42 and Rac and the Relationship Between Cdc42 and Actin Cytoskeleton in Vegetative and Ectomycorrhizal Hyphae of Suillus bovinus. Molecular Plant-Microbe Interactions, 2001, 14, 135-144.	2.6	41
24	Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Current Genetics, 2007, 52, 77-85.	1.7	40
25	Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology, 2013, 13, 205.	3.3	39
26	Molecular characterization of actin genes from homobasidiomycetes: two different actin genes from Schizophyllum commune and Suillus bovinus. Gene, 2000, 251, 27-35.	2.2	37
27	DRomics: A Turnkey Tool to Support the Use of the Dose–Response Framework for Omics Data in Ecological Risk Assessment. Environmental Science & Technology, 2018, 52, 14461-14468.	10.0	37
28	Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environmental Microbiology, 2021, 23, 5866-5882.	3.8	36
29	Tubulin and actin protein patterns in Scots pine (Pinus sylvestris) roots and developing ectomycorrhiza with Suillus bovinus. Physiologia Plantarum, 1996, 96, 186-192.	5.2	35
30	Aromatic weapons: truffles attack plants by the production of volatiles. New Phytologist, 2007, 175, 381-383.	7.3	35
31	Plant behavior upon contact with streptomycetes. Plant Signaling and Behavior, 2008, 3, 917-919.	2.4	31
32	Scots pine expresses short-root-specific peroxidases during development. FEBS Journal, 2001, 268, 86-93.	0.2	28
33	Secondary Metabolites of Soil Streptomycetes in Biotic Interactions. Soil Biology, 2008, , 107-126.	0.8	28
34	Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium. BMC Genomics, 2015, 16, 658.	2.8	28
35	Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecology, 2013, 6, 527-538.	1.6	27
36	Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. Journal of Experimental Botany, 2015, 66, 7113-7127.	4.8	27

Μικά Τάριο Τάγκκα

#	Article	IF	CITATIONS
37	A multi-omics concentration-response framework uncovers novel understanding of triclosan effects in the chlorophyte Scenedesmus vacuolatus. Journal of Hazardous Materials, 2020, 397, 122727.	12.4	25
38	Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes. BMC Genomics, 2016, 17, 627.	2.8	24
39	The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiological Research, 2021, 246, 126703.	5.3	24
40	Soil Texture, Sampling Depth and Root Hairs Shape the Structure of ACC Deaminase Bacterial Community Composition in Maize Rhizosphere. Frontiers in Microbiology, 2021, 12, 616828.	3.5	23
41	Mycorrhizal microbiomes. Mycorrhiza, 2018, 28, 403-409.	2.8	22
42	Spatiotemporal Dynamics of Maize (Zea mays L.) Root Growth and Its Potential Consequences for the Assembly of the Rhizosphere Microbiota. Frontiers in Microbiology, 2021, 12, 619499.	3.5	21
43	Multiple Potential Plant Growth Promotion Activities of Endemic Streptomyces spp. from Moroccan Sugar Beet Fields with Their Inhibitory Activities against Fusarium spp Microorganisms, 2021, 9, 1429.	3.6	21
44	Heat shock protein synthesis is induced by diethyl phthalate but not by di(2-ethylhexyl) phthalate in radish (Raphanus sativus). Journal of Plant Physiology, 2003, 160, 1001-1010.	3.5	20
45	Endogenous rhythmic growth, a trait suitable for the study of interplays between multitrophic interactions and tree development. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 19, 40-48.	2.7	20
46	Mycorrhiza Helper Bacteria. , 2008, , 113-132.		19
47	Developmentally regulated proteins during differentiation of root system and ectomycorrhiza in Scots pine (Pinus sylvestris) with Suillus bovinus. Physiologia Plantarum, 1998, 104, 449-455.	5.2	18
48	Synergists and antagonists in the rhizosphere modulate microbial communities and growth of Quercus robur L Soil Biology and Biochemistry, 2015, 82, 65-73.	8.8	18
49	Compatibility of X-ray computed tomography with plant gene expression, rhizosphere bacterial communities and enzyme activities. Journal of Experimental Botany, 2020, 71, 5603-5614.	4.8	17
50	The α-tubulin gene AmTuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria. Current Genetics, 2006, 49, 294-301.	1.7	16
51	Collembola interact with mycorrhizal fungi in modifying oak morphology, C and N incorporation and transcriptomics. Royal Society Open Science, 2019, 6, 181869.	2.4	15
52	Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics, 2020, 21, 399.	2.8	14
53	Plant Associated Soil Micro-organisms. Soil Biology, 2008, , 3-51.	0.8	14
54	Root hairs matter at field scale for maize shoot growth and nutrient uptake, but root trait plasticity is primarily triggered by texture and drought. Plant and Soil, 2022, 478, 119-141.	3.7	14

Μικά Τάριο Τάγκκα

#	Article	IF	CITATIONS
55	Bridging Microbial Functional Traits With Localized Process Rates at Soil Interfaces. Frontiers in Microbiology, 2021, 12, 625697.	3.5	12
56	Diversity and geographic distribution of soil streptomycetes with antagonistic potential against actinomycetoma-causing Streptomyces sudanensis in Sudan and South Sudan. BMC Microbiology, 2020, 20, 33.	3.3	11
57	Two phylogenetically highly distinct ?-tubulin genes of the basidiomycete Suillus bovinus. Current Genetics, 2005, 47, 253-263.	1.7	10
58	Transcriptome sequencing analysis of maize roots reveals the effects of substrate and root hair formation in a spatial context. Plant and Soil, 2022, 478, 211-228.	3.7	9
59	Tubulin and actin protein patterns in Scots pine (Pinus sylvestris) roots and developing ectomycorrhiza with Suillus bovinus. Physiologia Plantarum, 1996, 96, 186-192.	5.2	8
60	Designing Synergistic Biostimulants Formulation Containing Autochthonous Phosphate-Solubilizing Bacteria for Sustainable Wheat Production. Frontiers in Microbiology, 2022, 13, 889073.	3.5	8
61	Seeds with low phosphorus content: not so bad after all?. Journal of Experimental Botany, 2018, 69, 4993-4996.	4.8	7
62	Growth promotion and protection against root rot of sugar beet (Beta vulgaris L.) by two rock phosphate and potassium solubilizing Streptomyces spp. under greenhouse conditions. Plant and Soil, 2022, 472, 407-420.	3.7	7
63	Physiology of Ectomycorrhiza (ECM). , 2005, , 247-276.		6
64	WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum. Applied Microbiology and Biotechnology, 2009, 85, 347-358.	3.6	6
65	Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Frontiers in Microbiology, 0, 13, .	3.5	6
66	Biofilm forming rhizobacteria affect the physiological and biochemical responses of wheat to drought. AMB Express, 2022, 12, .	3.0	6
67	Tree Response to Herbivory Is Affected by Endogenous Rhythmic Growth and Attenuated by Cotreatment With a Mycorrhizal Fungus. Molecular Plant-Microbe Interactions, 2019, 32, 770-781.	2.6	5
68	Ectomycorrhizal fungus supports endogenous rhythmic growth and corresponding resource allocation in oak during various below- and aboveground biotic interactions. Scientific Reports, 2021, 11, 23680.	3.3	5
69	8 An Emerging Interdisciplinary Field: Fungal–Bacterial Interactions. , 2016, , 161-178.		4
70	Einfluss von Bodenbakterien auf Transkriptom und Proteom des Mykorrhizapilzes Amanita muscaria. , 2003, , 68-74.		0
71	Mycorrhizal Development and Cytoskeleton. , 2008, , 293-329.		0