
Megan A Macnaughtan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9396000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Backbone and sidechain resonance assignments and secondary structure of Scc4 from Chlamydia trachomatis. Biomolecular NMR Assignments, 2020, 14, 301-307.	0.8	1
2	Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4. Biomolecules, 2020, 10, 1480.	4.0	1
3	Expression, purification, and glycosylation of epidermal growth factor-like repeat 27 from mouse NOTCH1. Protein Expression and Purification, 2020, 174, 105681.	1.3	1
4	Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System. Journal of Bacteriology, 2020, 202, .	2.2	7
5	Purification of Tag-Free <i>Chlamydia trachomatis</i> Scc4 for Structural Studies Using Sarkosyl-Assisted on-Column Complex Dissociation. Biochemistry, 2019, 58, 4284-4292.	2.5	4
6	Structural modification of the tripeptide KPV by reductive "glycoalkylation―of the lysine residue. PLoS ONE, 2018, 13, e0199686.	2.5	5
7	Novel interpretations of inÂvitro polyhydroxyalkanoate polymerization phenomena. Polymer, 2016, 103, 196-205.	3.8	Ο
8	Increased phosphate transport of <scp><i>A</i></scp> <i>rabidopsis thaliana</i> â€ <scp>P</scp> ht1;1 by siteâ€directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions. Plant, Cell and Environment, 2015, 38, 2012-2022.	5.7	47
9	Evaluation of colorimetric assays for analyzing reductively methylated proteins: Biases and mechanistic insights. Analytical Biochemistry, 2015, 491, 43-51.	2.4	32
10	Multipart Chaperone-Effector Recognition in the Type III Secretion System of Chlamydia trachomatis. Journal of Biological Chemistry, 2015, 290, 28141-28155.	3.4	16
11	A Kazal-Type Serine Protease Inhibitor from the Defense Gland Secretion of the Subterranean Termite Coptotermes formosanus Shiraki. PLoS ONE, 2015, 10, e0125376.	2.5	9
12	Review of methods to assign the nuclear magnetic resonance peaks of reductively methylated proteins. Analytical Biochemistry, 2014, 466, 76-82.	2.4	5
13	CDP-Ethanolamine and CDP-Choline: one-pot synthesis and 31P NMR study. Tetrahedron Letters, 2014, 55, 5306-5310.	1.4	5
14	E. coli sabotages the in vivo production of O-linked β-N-acetylglucosamine-modified proteins. Journal of Biotechnology, 2013, 168, 315-323.	3.8	12
15	Microscopy basics and the study of actin–actin-binding protein interactions. Analytical Biochemistry, 2013, 443, 156-165.	2.4	5
16	Methods to Identify the NMR Resonances of the ¹³ C-Dimethyl N-terminal Amine on Reductively Methylated Proteins. Journal of Visualized Experiments, 2013, , e50875.	0.3	3
17	Acid dissociation constants of uridine-5′-diphosphate compounds determined by 31phosphorus nuclear magnetic resonance spectroscopy and internal pH referencing. Analytica Chimica Acta, 2012, 749, 63-69.	5.4	21
18	O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nature Chemical Biology, 2012, 8, 969-974.	8.0	123

#	Article	IF	CITATIONS
19	Rumi functions as both a protein <i>O</i> -glucosyltransferase and a protein <i>O</i> -xylosyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16600-16605.	7.1	72
20	Threeâ€dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping. Protein Science, 2010, 19, 1673-1685.	7.6	19
21	Design, Synthesis, and Structureâ ^{°'} Activity Relationship, Molecular Modeling, and NMR Studies of a Series of Phenyl Alkyl Ketones as Highly Potent and Selective Phosphodiesterase-4 Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 7673-7688.	6.4	37
22	¹³ C-Sialic Acid Labeling of Glycans on Glycoproteins Using ST6Gal-I. Journal of the American Chemical Society, 2008, 130, 11864-11865.	13.7	25
23	NMR Structural Characterization of Substrates Bound to N-Acetylglucosaminyltransferase V. Journal of Molecular Biology, 2007, 366, 1266-1281.	4.2	38
24	Mass Spectrometry Assisted Assignment of NMR Resonances in Reductively 13C-Methylated Proteins. Journal of the American Chemical Society, 2005, 127, 17626-17627.	13.7	21
25	NMR difference spectroscopy with a dual saddle-coil difference probe. Analytical and Bioanalytical Chemistry, 2004, 378, 1520-1527.	3.7	10
26	High-Throughput Nuclear Magnetic Resonance Analysis Using a Multiple Coil Flow Probe. Analytical Chemistry, 2003, 75, 5116-5123.	6.5	54
27	Preparation of Zeolites Supported on Optical Microfibers. Chemistry of Materials, 2002, 14, 3022-3027.	6.7	7
28	NMR Difference Probe: A Dual-Coil Probe for NMR Difference Spectroscopy. Journal of Magnetic Resonance, 2002, 156, 97-103.	2.1	19
29	Analysis of Multiple Samples Using Multiplex Sample NMR:  Selective Excitation and Chemical Shift Imaging Approaches. Analytical Chemistry, 2001, 73, 2541-2546.	6.5	36
30	Zeolite-Coated Optical Microfibers for Intrazeolite Photocatalysis Studied by in Situ Solid-State NMR. Journal of the American Chemical Society, 2000, 122, 404-405.	13.7	30