Tamar Tchkonia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9394945/publications.pdf

Version: 2024-02-01

9756 8599 30,025 150 73 146 citations h-index g-index papers 160 160 160 21937 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of senescence in the chronic health consequences of COVID-19. Translational Research, 2022, 241, 96-108.	2.2	25
2	Senescence in obesity., 2022,, 289-308.		3
3	miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. GeroScience, 2022, 44, 503-518.	2.1	15
4	Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metabolism, 2022, 34, 75-89.e8.	7.2	68
5	Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. journal of prevention of Alzheimer's disease, The, 2022, 9, 1-8.	1.5	34
6	Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, S34-S46.	0.9	8
7	Selective kidney targeting increases the efficacy of mesenchymal stromal/stem cells for alleviation of murine stenotica \in kidney senescence and damage. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 550-558.	1.3	5
8	Orally-active, clinically-translatable senolytics restore \hat{l}_{\pm} -Klotho in mice and humans. EBioMedicine, 2022, 77, 103912.	2.7	27
9	Targeted clearance of <i>p21</i> â€but not <i>p16</i> â€positive senescent cells prevents radiationâ€induced osteoporosis and increased marrow adiposity. Aging Cell, 2022, 21, e13602.	3.0	40
10	Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate. Experimental Gerontology, 2022, 163, 111798.	1.2	8
11	Selective Vulnerability of Senescent Glioblastoma Cells to BCL-XL Inhibition. Molecular Cancer Research, 2022, 20, 938-948.	1.5	22
12	Senolytics in Idiopathic Pulmonary Fibrosis: The First-in-Human Randomized Controlled Trial., 2022,,.		0
13	<scp>TNF</scp> â€Î±/ <scp>IFN</scp> â€Î³ synergy amplifies senescenceâ€associated inflammation and <scp>SARSâ€CoV</scp> â€2 receptor expression via hyperâ€activated <scp>JAK</scp> / <scp>STAT1</scp> . Aging Cell, 2022, 21, .	3.0	31
14	New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1481-e1487.	1.8	67
15	Mechanisms of vascular dysfunction in the interleukin-10–deficient murine model of preeclampsia indicate nitric oxide dysregulation. Kidney International, 2021, 99, 646-656.	2.6	10
16	Increased cellular senescence in the murine and human stenotic kidney: Effect of mesenchymal stem cells. Journal of Cellular Physiology, 2021, 236, 1332-1344.	2.0	25
17	Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annual Review of Pharmacology and Toxicology, 2021, 61, 779-803.	4.2	151
18	Wholeâ€body senescent cell clearance alleviates ageâ€related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20, e13296.	3.0	186

#	Article	IF	Citations
19	Senolytic Combination of Dasatinib and Quercetin Alleviates Intestinal Senescence and Inflammation and Modulates the Gut Microbiome in Aged Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1895-1905.	1.7	113
20	SMAD4 mutations and cross-talk between TGF-β/IFNγ signaling accelerate rates of DNA damage and cellular senescence, resulting in a segmental progeroid syndromeâ€"the Myhre syndrome. GeroScience, 2021, 43, 1481-1496.	2.1	9
21	Quercetin Reverses Cardiac Systolic Dysfunction in Mice Fed with a High-Fat Diet: Role of Angiogenesis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	1.9	27
22	Neutrophils induce paracrine telomere dysfunction and senescence in ROSâ€dependent manner. EMBO Journal, 2021, 40, e106048.	3.5	101
23	Senolytics: Potential for Alleviating Diabetes and Its Complications. Endocrinology, 2021, 162, .	1.4	21
24	Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. Diabetes, 2021, 70, 1561-1574.	0.3	12
25	JAK/STAT inhibition augments soleus muscle function in a rat model of critical illness myopathy via regulation of complement C3/3R. Journal of Physiology, 2021, 599, 2869-2886.	1.3	9
26	Senescent cells in human adipose tissue: A crossâ€sectional study. Obesity, 2021, 29, 1320-1327.	1.5	18
27	Senolytics reduce coronavirus-related mortality in old mice. Science, 2021, 373, .	6.0	184
28	Progressive Cellular Senescence Mediates Renal Dysfunction in Ischemic Nephropathy. Journal of the American Society of Nephrology: JASN, 2021, 32, 1987-2004.	3.0	42
29	Epigenetic and senescence markers indicate an accelerated ageing-like state in women with preeclamptic pregnancies. EBioMedicine, 2021, 70, 103536.	2.7	20
30	FBF1 deficiency promotes beiging and healthy expansion of white adipose tissue. Cell Reports, 2021, 36, 109481.	2.9	17
31	Fisetin for <scp>COVID</scp> â€19 in skilled nursing facilities: Senolytic trials in the <scp>COVID</scp> era. Journal of the American Geriatrics Society, 2021, 69, 3023-3033.	1.3	35
32	Accelerated aging in older cancer survivors. Journal of the American Geriatrics Society, 2021, 69, 3077-3080.	1.3	15
33	Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mechanisms of Ageing and Development, 2021, 198, 111548.	2.2	39
34	SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging, 2021, 13, 21838-21854.	1.4	51
35	Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Communications Biology, 2021, 4, 61.	2.0	35
36	An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nature Aging, 2021, 1, 962-973.	5.3	61

3

#	Article	IF	Citations
37	Strategies for late phase preclinical and early clinical trials of senolytics. Mechanisms of Ageing and Development, 2021, 200, 111591.	2.2	48
38	Obesity, Senescence, and Senolytics. Handbook of Experimental Pharmacology, 2021, , 165-180.	0.9	10
39	A toolbox for the longitudinal assessment of healthspan in aging mice. Nature Protocols, 2020, 15, 540-574.	5. 5	81
40	Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. Advanced Science, 2020, 7, 2002611.	5.6	70
41	Senolytic drugs: from discovery to translation. Journal of Internal Medicine, 2020, 288, 518-536.	2.7	515
42	CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nature Metabolism, 2020, 2, 1284-1304.	5.1	157
43	Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers, 2020, 12, 2134.	1.7	134
44	Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nature Communications, 2020, 11, 4289.	5.8	125
45	Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. Aging Cell, 2020, 19, e13219.	3.0	21
46	The role of cellular senescence in ageing and endocrine disease. Nature Reviews Endocrinology, 2020, 16, 263-275.	4.3	276
47	Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. American Journal of Physiology - Renal Physiology, 2020, 318, F1167-F1176.	1.3	27
48	Discovery, development, and future application of senolytics: theories and predictions. FEBS Journal, 2020, 287, 2418-2427.	2.2	100
49	Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell, 2020, 19, e13106.	3.0	51
50	Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapyâ€Related Bone Loss. Journal of Bone and Mineral Research, 2020, 35, 1119-1131.	3.1	74
51	Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. Trends in Biochemical Sciences, 2020, 45, 578-592.	3.7	126
52	Reducing Senescent Cell Burden in Aging and Disease. Trends in Molecular Medicine, 2020, 26, 630-638.	3.5	102
53	Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 197.	1.8	79
54	Cellular senescence in aging and age-related diseases: Implications for neurodegenerative diseases. International Review of Neurobiology, 2020, 155, 203-234.	0.9	50

#	Article	IF	Citations
55	Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice. Aging, 2020, 12, 2711-2722.	1.4	49
56	Discovery of Senolytics and the Pathway to Early Phase Clinical Trials. Healthy Ageing and Longevity, 2020, , 21-40.	0.2	0
57	Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Translational Research, 2019, 213, 112-123.	2.2	78
58	The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience, 2019, 41, 759-774.	2.1	29
59	Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biology of Sex Differences, 2019, 10, 49.	1.8	49
60	Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456.	2.7	697
61	Therapeutic Approaches to Agingâ€"Reply. JAMA - Journal of the American Medical Association, 2019, 321, 901.	3.8	4
62	Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. Journal of Bone and Mineral Research, 2019, 34, 1407-1418.	3.1	77
63	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	3.0	395
64	Agedâ€senescent cells contribute to impaired heart regeneration. Aging Cell, 2019, 18, e12931.	3.0	202
65	The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochemical and Biophysical Research Communications, 2019, 513, 486-493.	1.0	90
66	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	3.5	307
67	Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open Diabetes Research and Care, 2019, 7, e000720.	1.2	36
68	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.	7. <u>2</u>	293
69	Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine, 2019, 40, 554-563.	2.7	746
70	Cellular Senescence Biomarker p16INK4a+ Cell Burden in Thigh Adipose is Associated With Poor Physical Function in Older Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 939-945.	1.7	92
71	Muscleâ€specific differences in expression and phosphorylation of the Janus kinase 2/Signal Transducer and Activator of Transcription 3 following longâ€term mechanical ventilation and immobilization in rats. Acta Physiologica, 2018, 222, e12980.	1.8	8
72	Targeting senescent cholangiocytes and activated fibroblasts with Bâ€cell lymphomaâ€extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2â~'/â^') mice. Hepatology, 2018, 67, 247-259.	3.6	99

#	Article	IF	Citations
73	Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Seminars in Immunology, 2018, 40, 101275.	2.7	285
74	Premature Physiologic Aging as a Paradigm for Understanding Increased Risk of Adverse Health Across the Lifespan of Survivors of Childhood Cancer. Journal of Clinical Oncology, 2018, 36, 2206-2215.	0.8	99
75	Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 2018, 36, 18-28.	2.7	554
76	Aging, Cell Senescence, and Chronic Disease. JAMA - Journal of the American Medical Association, 2018, 320, 1319.	3.8	214
77	The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. American Journal of Physiology - Renal Physiology, 2018, 315, F1493-F1499.	1.3	26
78	Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 2018, 24, 1246-1256.	15.2	1,384
79	Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw154.	1.7	163
80	17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 3-15.	1.7	91
81	Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 2017, 8, 14532.	5 . 8	1,008
82	Cellular Senescence: A Translational Perspective. EBioMedicine, 2017, 21, 21-28.	2.7	690
83	Cellular senescence drives age-dependent hepatic steatosis. Nature Communications, 2017, 8, 15691.	5 . 8	673
84	Targeting cellular senescence prevents age-related bone loss in mice. Nature Medicine, 2017, 23, 1072-1079.	15.2	754
85	Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communications, 2017, 8, 422.	5.8	466
86	Biology of premature ageing in survivors of cancer. ESMO Open, 2017, 2, e000250.	2.0	148
87	New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging, 2017, 9, 955-963.	1.4	469
88	The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society, 2017, 65, 2297-2301.	1.3	416
89	TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging, 2017, 9, 2411-2435.	1.4	95

#	Article	IF	Citations
91	Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacological Research, 2016, 111, 152-154.	3.1	54
92	Identification of a novel senolytic agent, navitoclax, targeting the Bclâ€2 family of antiâ€apoptotic factors. Aging Cell, 2016, 15, 428-435.	3.0	717
93	Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 2016, 15, 973-977.	3.0	540
94	Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Science Signaling, 2016, 9, ra79.	1.6	60
95	Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence. Gerontology, 2016, 62, 163-172.	1.4	15
96	Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes, 2016, 65, 1606-1615.	0.3	185
97	Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut, 2016, 65, 1165-1174.	6.1	173
98	The Way Forward: Translation. , 2016, , 593-622.		0
99	Cellular Senescence and the Biology of Aging, Disease, and Frailty. Nestle Nutrition Institute Workshop Series, 2015, 83, 11-18.	1.5	117
100	Targeting senescent cells enhances adipogenesis and metabolic function in old age. ELife, 2015, 4, e12997.	2.8	436
101	Clinical strategies and animal models for developing senolytic agents. Experimental Gerontology, 2015, 68, 19-25.	1.2	125
102	JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6301-10.	3.3	543
103	TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. Journal of Hepatology, 2015, 62, 1156-1163.	1.8	85
104	The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14, 644-658.	3.0	1,534
105	Frailty in childhood cancer survivors. Cancer, 2015, 121, 1540-1547.	2.0	132
106	Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes, 2015, 64, 2289-2298.	0.3	294
107	Inflammatory characteristics of adipose tissue collected by surgical excision vs needle aspiration. International Journal of Obesity, 2015, 39, 874-876.	1.6	5
108	Inflammation and the depot-specific secretome of human preadipocytes. Obesity, 2015, 23, 989-999.	1.5	28

#	Article	IF	Citations
109	Deleted in Breast Cancer 1 Limits Adipose Tissue Fat Accumulation and Plays a Key Role in the Development of Metabolic Syndrome Phenotype. Diabetes, 2015, 64, 12-22.	0.3	19
110	Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHR \hat{a} mice. Aging, 2015, 7, 500-512.	1.4	46
111	Growth hormone in adipose dysfunction and senescence. Oncotarget, 2015, 6, 10667-10668.	0.8	6
112	Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. Journal of Assisted Reproduction and Genetics, 2014, 31, 1259-1267.	1.2	27
113	Deleted in <scp>B</scp> reast <scp>C</scp> ancer 1 regulates cellular senescence during obesity. Aging Cell, 2014, 13, 951-953.	3.0	23
114	Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 324-328.	1.3	215
115	The Aging Adipose Organ: Lipid Redistribution, Inflammation, and Cellular Senescence., 2014, , 69-80.		8
116	Liver-Specific GH Receptor Gene-Disrupted (LiGHRKO) Mice Have Decreased Endocrine IGF-I, Increased Local IGF-I, and Altered Body Size, Body Composition, and Adipokine Profiles. Endocrinology, 2014, 155, 1793-1805.	1.4	125
117	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging, 2014, 6, 575-586.	1.4	107
118	IGFâ€I attenuates FFAâ€Induced activation of JNK1 phosphorylation and TNFα expression in human subcutaneous preadipocytes. Obesity, 2013, 21, 1843-1849.	1.5	17
119	Mechanisms and Metabolic Implications of Regional Differences among Fat Depots. Cell Metabolism, 2013, 17, 644-656.	7.2	507
120	Preferential impact of pregnancy-associated plasma protein-A deficiency on visceral fat in mice on high-fat diet. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1145-E1153.	1.8	29
121	Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. Journal of Clinical Investigation, 2013, 123, 966-972.	3.9	1,326
122	Sphingolipid Content of Human Adipose Tissue: Relationship to Adiponectin and Insulin Resistance. Obesity, 2012, 20, 2341-2347.	1.5	71
123	Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479, 232-236.	13.7	2,806
124	Aging and Adipose Tissue. , 2011, , 119-139.		7
125	Aging and Regional Differences in Fat Cell Progenitors – A Mini-Review. Gerontology, 2011, 57, 66-75.	1.4	196
126	Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 143-148.	3.3	425

#	Article	IF	Citations
127	Fat tissue, aging, and cellular senescence. Aging Cell, 2010, 9, 667-684.	3.0	834
128	Sex―and Depotâ€Dependent Differences in Adipogenesis in Normalâ€Weight Humans. Obesity, 2010, 18, 1875-1880.	1.5	113
129	Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors. Diabetes, 2010, 59, 2513-2521.	0.3	140
130	Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18226-18231.	3.3	322
131	Aging, Depot Origin, and Preadipocyte Gene Expression. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 242-251.	1.7	76
132	IGF-I Activation of the AKT Pathway Is Impaired in Visceral But Not Subcutaneous Preadipocytes from Obese Subjects. Endocrinology, 2010, 151, 3752-3763.	1.4	45
133	Adipose Tissue Endothelial Cells From Obese Human Subjects: Differences Among Depots in Angiogenic, Metabolic, and Inflammatory Gene Expression and Cellular Senescence. Diabetes, 2010, 59, 2755-2763.	0.3	232
134	Substance P promotes expansion of human mesenteric preadipocytes through proliferative and antiapoptotic pathways. American Journal of Physiology - Renal Physiology, 2009, 296, G1012-G1019.	1.6	39
135	Inducible Tollâ€ike Receptor and NFâ€î°B Regulatory Pathway Expression in Human Adipose Tissue. Obesity, 2008, 16, 932-937.	1.5	199
136	Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Molecular and Cellular Endocrinology, 2008, 296, 32-40.	1.6	138
137	Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1041-E1051.	1.8	68
138	Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E298-E307.	1.8	309
139	Increased TNFα and CCAAT/enhancer-binding protein homologous protein with aging predispose preadipocytes to resist adipogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1810-E1819.	1.8	60
140	Aging in adipocytes: Potential impact of inherent, depot-specific mechanisms. Experimental Gerontology, 2007, 42, 463-471.	1.2	251
141	Current Views of the Fat Cell as an Endocrine Cell: Lipotoxicity. , 2006, , 105-123.		21
142	Fat Depot–Specific Characteristics Are Retained in Strains Derived From Single Human Preadipocytes. Diabetes, 2006, 55, 2571-2578.	0.3	207
143	Induction of colitis causes inflammatory responses in fat depots: Evidence for substance P pathways in human mesenteric preadipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5207-5212.	3.3	80
144	Increased CUG Triplet Repeat-binding Protein-1 Predisposes to Impaired Adipogenesis with Aging. Journal of Biological Chemistry, 2006, 281, 23025-23033.	1.6	56

#	Article	IF	CITATIONS
145	Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E267-E277.	1.8	214
146	Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1286-R1296.	0.9	219
147	Adipogenesis and aging: does aging make fat go MAD?. Experimental Gerontology, 2002, 37, 757-767.	1.2	305
148	Altered expression of C/EBP family members results in decreased adipogenesis with aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1772-R1780.	0.9	143
149	Fat depot origin affects fatty acid handling in cultured rat and human preadipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E238-E247.	1.8	75
150	Different fat depots are distinct mini-organs. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 227-234.	0.6	9