David Alland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/93946/publications.pdf

Version: 2024-02-01

62 papers

6,896 citations

147801 31 h-index 61 g-index

68 all docs 68
docs citations

68 times ranked 6949 citing authors

#	Article	IF	CITATIONS
1	Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. New England Journal of Medicine, 2010, 363, 1005-1015.	27.0	1,936
2	Rapid Detection of <i>Mycobacterium tuberculosis</i> and Rifampin Resistance by Use of On-Demand, Near-Patient Technology. Journal of Clinical Microbiology, 2010, 48, 229-237.	3.9	774
3	Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infectious Diseases, The, 2018, 18, 76-84.	9.1	474
4	The New Xpert MTB/RIF Ultra: Improving Detection of <i>Mycobacterium tuberculosis</i> and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. MBio, 2017, 8, .	4.1	431
5	Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 2640-2649.	3. 2	364
6	A standardised method for interpreting the association between mutations and phenotypic drug resistance in <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2017, 50, 1701354.	6.7	273
7	Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nature Medicine, 2016, 22, 1094-1100.	30.7	247
8	Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-Î ² -D-arabinose biosynthetic and utilization pathway genes. Nature Genetics, 2013, 45, 1190-1197.	21.4	191
9	Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis, 2017, 107, 48-58.	1.9	156
10	Multicenter Evaluation of the Cepheid Xpert Xpress SARS-CoV-2 Test. Journal of Clinical Microbiology, 2020, 58, .	3.9	146
11	Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nature Chemical Biology, 2013, 9, 499-506.	8.0	129
12	Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis. New England Journal of Medicine, 2017, 377, 1043-1054.	27.0	129
13	Transfer of <i>embB</i> Codon 306 Mutations into Clinical <i>Mycobacterium tuberculosis</i> Strains Alters Susceptibility to Ethambutol, Isoniazid, and Rifampin. Antimicrobial Agents and Chemotherapy, 2008, 52, 2027-2034.	3.2	115
14	Bacterial Factors That Predict Relapse after Tuberculosis Therapy. New England Journal of Medicine, 2018, 379, 823-833.	27.0	114
15	Modeling Bacterial Evolution with Comparative-Genome-Based Marker Systems: Application to Mycobacterium tuberculosis Evolution and Pathogenesis. Journal of Bacteriology, 2003, 185, 3392-3399.	2.2	101
16	Phase variation in <i>Mycobacterium tuberculosis glpK</i> produces transiently heritable drug tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19665-19674.	7.1	96
17	A Novel Small-Molecule Inhibitor of the <i>Mycobacterium tuberculosis</i> Demethylmenaquinone Methyltransferase MenG Is Bactericidal to Both Growing and Nutritionally Deprived Persister Cells. MBio, 2017, 8, .	4.1	84
18	Evaluation of Xpert MTB/RIF Versus AFB Smear and Culture to Identify Pulmonary Tuberculosis in Patients With Suspected Tuberculosis From Low and Higher Prevalence Settings. Clinical Infectious Diseases, 2016, 62, 1081-1088.	5.8	68

#	Article	IF	CITATIONS
19	Whole Genome Sequencing of Mycobacterium tuberculosis Reveals Slow Growth and Low Mutation Rates during Latent Infections in Humans. PLoS ONE, 2014, 9, e91024.	2.5	66
20	Phosphorylation of KasB Regulates Virulence and Acid-Fastness in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004115.	4.7	63
21	Allelic Exchange and Mutant Selection Demonstrate that Common Clinical <i>embCAB</i> Gene Mutations Only Modestly Increase Resistance to Ethambutol in <i>Mycobacterium tuberculosis</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 103-108.	3.2	52
22	Rapid Universal Identification of Bacterial Pathogens from Clinical Cultures by Using a Novel Sloppy Molecular Beacon Melting Temperature Signature Technique. Journal of Clinical Microbiology, 2010, 48, 258-267.	3.9	48
23	Rapid Detection of Fluoroquinolone-Resistant and Heteroresistant Mycobacterium tuberculosis by Use of Sloppy Molecular Beacons and Dual Melting-Temperature Codes in a Real-Time PCR Assay. Journal of Clinical Microbiology, 2011, 49, 932-940.	3.9	48
24	A Simple Reverse Transcriptase PCR Melting-Temperature Assay To Rapidly Screen for Widely Circulating SARS-CoV-2 Variants. Journal of Clinical Microbiology, 2021, 59, e0084521.	3.9	48
25	Detection of Isoniazid-, Fluoroquinolone-, Amikacin-, and Kanamycin-Resistant Tuberculosis in an Automated, Multiplexed 10-Color Assay Suitable for Point-of-Care Use. Journal of Clinical Microbiology, 2017, 55, 183-198.	3.9	47
26	Intensity of exposure to pulmonary tuberculosis determines risk of tuberculosis infection and disease. European Respiratory Journal, 2018, 51, 1701578.	6.7	46
27	Xpert MTB/XDR: a 10-Color Reflex Assay Suitable for Point-of-Care Settings To Detect Isoniazid, Fluoroquinolone, and Second-Line-Injectable-Drug Resistance Directly from Mycobacterium tuberculosis-Positive Sputum. Journal of Clinical Microbiology, 2021, 59, .	3.9	43
28	Feasibility and Operational Performance of Tuberculosis Detection by Loop-Mediated Isothermal Amplification Platform in Decentralized Settings: Results from a Multicenter Study. Journal of Clinical Microbiology, 2016, 54, 1984-1991.	3.9	37
29	Synergistic Lethality of a Binary Inhibitor of Mycobacterium tuberculosis KasA. MBio, 2018, 9, .	4.1	37
30	Mycobacterium tuberculosis progresses through two phases of latent infection in humans. Nature Communications, 2020, 11, 4870.	12.8	36
31	Bacterial Loads Measured by the Xpert MTB/RIF Assay as Markers of Culture Conversion and Bacteriological Cure in Pulmonary TB. PLoS ONE, 2016, 11, e0160062.	2.5	35
32	Importance of Cough and M. tuberculosis Strain Type as Risks for Increased Transmission within Households. PLoS ONE, 2014, 9, e100984.	2.5	32
33	Integration of Published Information Into a Resistance-Associated Mutation Database for Mycobacterium tuberculosis. Journal of Infectious Diseases, 2015, 211, S50-S57.	4.0	32
34	Genotypic Susceptibility Testing of Mycobacterium tuberculosis Isolates for Amikacin and Kanamycin Resistance by Use of a Rapid Sloppy Molecular Beacon-Based Assay Identifies More Cases of Low-Level Drug Resistance than Phenotypic Lowenstein-Jensen Testing. Journal of Clinical Microbiology, 2015, 53, 43-51.	3.9	32
35	Quantitative 18F-FDG PET-CT scan characteristics correlate with tuberculosis treatment response. EJNMMI Research, 2020, 10, 8.	2.5	27
36	Discordance of Tuberculin Skin Test and Interferon Gamma Release Assay in Recently Exposed Household Contacts of Pulmonary TB Cases in Brazil. PLoS ONE, 2014, 9, e96564.	2.5	26

3

#	Article	IF	CITATIONS
37	Geographic Differences in the Contribution of <i>ubiA</i> Mutations to High-Level Ethambutol Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4101-4105.	3.2	24
38	Molecular Detection of Mycobacterium tuberculosis from Stools in Young Children by Use of a Novel Centrifugation-Free Processing Method. Journal of Clinical Microbiology, 2018, 56, .	3.9	23
39	Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial. Gates Open Research, 2017, 1, 9.	1.1	22
40	High Systemic Exposure of Pyrazinoic Acid Has Limited Antituberculosis Activity in Murine and Rabbit Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4197-4205.	3.2	21
41	Automatic Identification of Individual <i>rpoB</i> Gene Mutations Responsible for Rifampin Resistance in Mycobacterium tuberculosis by Use of Melting Temperature Signatures Generated by the Xpert MTB/RIF Ultra Assay. Journal of Clinical Microbiology, 2019, 58, .	3.9	18
42	Incident Mycobacterium tuberculosis infection in household contacts of infectious tuberculosis patients in Brazil. BMC Infectious Diseases, 2017, 17, 576.	2.9	14
43	Reversible gene silencing through frameshift indels and frameshift scars provide adaptive plasticity for Mycobacterium tuberculosis. Nature Communications, 2021, 12, 4702.	12.8	14
44	Rapid Detection of Bacillus anthracis Bloodstream Infections by Use of a Novel Assay in the GeneXpert System. Journal of Clinical Microbiology, 2017, 55, 2964-2971.	3.9	13
45	RT-PCR negative COVID-19. BMC Infectious Diseases, 2022, 22, 149.	2.9	13
46	Rapid and Sensitive Detection of Mycobacterium DNA Using Cepheid SmartCycler \hat{A}^{\otimes} and Tube Lysis System. Clinical Chemistry, 2001, 47, 1917-1918.	3.2	12
47	Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance. PLoS ONE, 2015, 10, e0126257.	2.5	12
48	Performance of the G4 Xpert® MTB/RIF assay for the detection of Mycobacterium tuberculosis and rifampin resistance: a retrospective case-control study of analytical and clinical samples from highand low-tuberculosis prevalence settings. BMC Infectious Diseases, 2016, 16, 764.	2.9	11
49	Inactivation of SARS-CoV-2 virus in saliva using a guanidium based transport medium suitable for RT-PCR diagnostic assays. PLoS ONE, 2021, 16, e0252687.	2.5	11
50	Prospective Cross-Sectional Evaluation of the Small Membrane Filtration Method for Diagnosis of Pulmonary Tuberculosis. Journal of Clinical Microbiology, 2014, 52, 2513-2520.	3.9	10
51	Sensitive Detection of Francisella tularensis Directly from Whole Blood by Use of the GeneXpert System. Journal of Clinical Microbiology, 2017, 55, 291-301.	3.9	10
52	Polymorphisms in Rv3806c (ubiA) and the upstream region of embA in relation to ethambutol resistance in clinical isolates of Mycobacterium tuberculosis from North India. Tuberculosis, 2018, 108, 41-46.	1.9	9
53	Detection of drug resistant Mycobacterium tuberculosis by high-throughput sequencing of DNA isolated from acid fast bacilli smears. PLoS ONE, 2020, 15, e0232343.	2.5	7
54	Multiplex Detection of Three Select Agents Directly from Blood by Use of the GeneXpert System. Journal of Clinical Microbiology, 2019, 57, .	3.9	6

#	ARTICLE	IF	CITATION
55	A snapshot of the predominant single nucleotide polymorphism cluster groups of Mycobacterium tuberculosis clinical isolates in Delhi, India. Tuberculosis, 2016, 100, 72-81.	1.9	5
56	Strains of Mycobacterium tuberculosis transmitting infection in Brazilian households and those associated with community transmission of tuberculosis. Tuberculosis, 2017, 104, 79-86.	1.9	5
57	Rapidly Correcting Frameshift Mutations in the Mycobacterium tuberculosis <i>orn</i> Gene Produce Reversible Ethambutol Resistance and Small-Colony-Variant Morphology. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	5
58	Improving the Sensitivity of the Xpert MTB/RIF Assay on Sputum Pellets by Decreasing the Amount of Added Sample Reagent: a Laboratory and Clinical Evaluation. Journal of Clinical Microbiology, 2015, 53, 1258-1263.	3.9	4
59	Lack of association of novel mutation Asp397Gly in aftB gene with ethambutol resistance in clinical isolates of Mycobacterium tuberculosis. Tuberculosis, 2019, 115, 49-55.	1.9	3
60	Reply to Vargas and Farhat: Mycobacterium tuberculosis glpK mutants in human tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3913-3914.	7.1	3
61	Sample collection and transport strategies to enhance yield, accessibility, and biosafety of COVID-19 RT-PCR testing. Journal of Medical Microbiology, 2021, 70, .	1.8	3
62	Nucleic acid extraction using a rapid, chemical free, ultrasonic technique for point-of-care diagnostics., 2014,,.		2