## Ze Chen

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9393937/publications.pdf

Version: 2024-02-01

186265 243625 2,863 44 28 44 citations h-index g-index papers 45 45 45 1882 all docs docs citations times ranked citing authors

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Smallâ€Dipoleâ€Moleculeâ€Containing Electrolytes for Highâ€Voltage Aqueous Rechargeable Batteries.<br>Advanced Materials, 2022, 34, e2106180.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.0 | 58        |
| 2  | Cathode Engineering for High Energy Density Aqueous Zn Batteries. Accounts of Materials Research, 2022, 3, 78-88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.7 | 32        |
| 3  | Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion<br>Batteries. Angewandte Chemie, 2022, 134, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0  | 24        |
| 4  | Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion<br>Batteries. Angewandte Chemie - International Edition, 2022, 61, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.8 | 124       |
| 5  | Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€Ion Conversion Battery. Angewandte<br>Chemie, 2022, 134, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0  | 4         |
| 6  | Twoâ€Electron Redox Chemistry Enabled Highâ€Performance Iodideâ€Ion Conversion Battery. Angewandte Chemie - International Edition, 2022, 61, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.8 | 34        |
| 7  | Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy and Environmental Science, 2022, 15, 1086-1096.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.8 | 141       |
| 8  | Tellurium: A High-Performance Cathode for Magnesium Ion Batteries Based on a Conversion Mechanism. ACS Nano, 2022, 16, 5349-5357.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.6 | 28        |
| 9  | Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti <sub>3</sub> C <sub>2</sub> MXenes. ACS Nano, 2022, 16, 813-822.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.6 | 90        |
| 10 | Organic materialsâ€based cathode for zinc ion battery. SmartMat, 2022, 3, 565-581.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.7 | 54        |
| 11 | Highâ€Voltage Organic Cathodes for Zincâ€Ion Batteries through Electron Cloud and Solvation Structure Regulation. Angewandte Chemie - International Edition, 2022, 61, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.8 | 60        |
| 12 | Highâ€Voltage Organic Cathodes for Zincâ€Ion Batteries through Electron Cloud and Solvation Structure Regulation. Angewandte Chemie, 2022, 134, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0  | 20        |
| 13 | Electrocatalytic Selenium Redox Reaction for Highâ€Massâ€Loading Zincâ€Selenium Batteries with Improved Kinetics and Selenium Utilization. Advanced Energy Materials, 2022, 12, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.5 | 29        |
| 14 | Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. CheM, 2022, 8, 2204-2216.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.7 | 65        |
| 15 | Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie<br>- International Edition, 2022, 61, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.8 | 31        |
| 16 | Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie, 2022, 134, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0  | 0         |
| 17 | Ionic Liquid-Softened Polymer Electrolyte for Anti-Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Drying Flexible Zinc Ion Batteries. | 8.0  | 20        |
| 18 | Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie, 2021, 133, 1024-1034.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0  | 21        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie - International Edition, 2021, 60, 1011-1021.                                                                       | 13.8 | 122       |
| 20 | Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy and Environmental Science, 2021, 14, 3492-3501.                                                | 30.8 | 152       |
| 21 | Activating the I <sup>0</sup> /I <sup>+</sup> redox couple in an aqueous I <sub>2</sub> –Zn battery to achieve a high voltage plateau. Energy and Environmental Science, 2021, 14, 407-413.                                          | 30.8 | 129       |
| 22 | Confining Aqueous Zn–Br Halide Redox Chemistry by Ti <sub>3</sub> C <sub>2</sub> T <sub>X</sub> MXene. ACS Nano, 2021, 15, 1718-1726.                                                                                                | 14.6 | 78        |
| 23 | Carbonaceous and Polymer Materials for Li–S Batteries with an Emphasis on Flexible Devices.<br>Advanced Energy and Sustainability Research, 2021, 2, 2000096.                                                                        | 5.8  | 6         |
| 24 | Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nature Communications, 2021, 12, 3106.                                                                                                             | 12.8 | 104       |
| 25 | Regulating nitrogenous adsorption and desorption on Pd clusters by the acetylene linkages of hydrogen substituted graphdiyne for efficient electrocatalytic ammonia synthesis. Nano Energy, 2021, 86, 106099.                        | 16.0 | 34        |
| 26 | Toward a Practical Zn Powder Anode: Ti <sub>3</sub> C <sub>2</sub> T <i>x</i> MXene as a Lattice-Match Electrons/Ions Redistributor. ACS Nano, 2021, 15, 14631-14642.                                                                | 14.6 | 137       |
| 27 | Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy and Environmental Science, 2021, 14, 2441-2450.                                                                      | 30.8 | 93        |
| 28 | Enhanced Redox Kinetics and Duration of Aqueous I <sub>2</sub> /I <sup>â^'</sup> Conversion Chemistry by MXene Confinement. Advanced Materials, 2021, 33, e2006897.                                                                  | 21.0 | 121       |
| 29 | Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: achieving multiple deformabilities. Energy and Environmental Science, 2021, 14, 3599-3608.                                             | 30.8 | 49        |
| 30 | Conversionâ€Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries. Advanced Materials, 2021, 33, e2105426.                                                                                  | 21.0 | 48        |
| 31 | Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity.<br>Advanced Materials, 2020, 32, e2001469.                                                                                           | 21.0 | 104       |
| 32 | Metal‶ellurium Batteries: A Rising Energy Storage System. Small Structures, 2020, 1, 2000005.                                                                                                                                        | 12.0 | 46        |
| 33 | Phosphorene as Cathode Material for Highâ€Voltage, Antiâ€Selfâ€Discharge Zinc Ion Hybrid Capacitors.<br>Advanced Energy Materials, 2020, 10, 2001024.                                                                                | 19.5 | 149       |
| 34 | Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Znâ€MnO <sub>2</sub> Batteries with Superior Rate Capabilities. Advanced Energy Materials, 2020, 10, 2000035. | 19.5 | 287       |
| 35 | Buckled Amorphous Hollow Carbon Spheres: Facile Fabrication, Buckling Process, and Applications as Electrode Materials for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30116-30124.                         | 8.0  | 14        |
| 36 | A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chemical Communications, 2018, 54, 3126-3129.                                                                                                       | 4.1  | 79        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATION |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| 37 | Confined Assembly of Hollow Carbon Spheres in Carbonaceous Nanotube: A Spheresâ€inâ€Tube Carbon<br>Nanostructure with Hierarchical Porosity for Highâ€Performance Supercapacitor. Small, 2018, 14,<br>e1704015.                   | 10.0 | 64       |
| 38 | Graphene oxide/poly (N-isopropylacrylamide) hybrid film-based near-infrared light-driven bilayer actuators with shape memory effect. Sensors and Actuators B: Chemical, 2018, 255, 2971-2978.                                     | 7.8  | 48       |
| 39 | A spheres-in-tube carbonaceous nanostructure for high-capacity and high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 14885-14893.                                                                    | 10.3 | 22       |
| 40 | Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. Nanoscale, 2017, 9, 17357-17363.                                                                                 | 5.6  | 32       |
| 41 | Shackling Effect Induced Property Differences in Metallo-Supramolecular Polymers. Journal of the American Chemical Society, 2017, 139, 14364-14367.                                                                               | 13.7 | 19       |
| 42 | N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance. Journal of Power Sources, 2017, 363, 356-364.                                            | 7.8  | 45       |
| 43 | Precisely controlled growth of poly(ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties. Composites Part A: Applied Science and Manufacturing, 2017, 93, 100-106. | 7.6  | 19       |
| 44 | From ultratough artificial nacre to elastomer: Poly(n-butyl acrylate) grafted graphene oxide nanocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 88, 156-164.                                             | 7.6  | 19       |