
Luisa Amo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9393822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica. Biology, 2022, 11, 84.	2.8	3
2	Assessing behavioral sex differences to chemical cues of predation risk while provisioning nestlings in a hole-nesting bird. PLoS ONE, 2022, 17, e0268678.	2.5	5
3	Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects. Biology, 2021, 10, 1010.	2.8	4
4	The importance of chemical, visual and behavioral cues of predators on the antipredatory behavior of birds. Journal of Avian Biology, 2020, 51, .	1.2	2
5	Egg concealment is an antipredatory strategy in a cavityâ€nesting bird. Ethology, 2019, 125, 785-790.	1.1	7
6	What do we know about birds' use of plant volatile cues in tritrophic interactions?. Current Opinion in Insect Science, 2019, 32, 131-136.	4.4	18
7	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	7.3	101
8	The Evolution of Olfactory Capabilities in Wild Birds: A Comparative Study. Evolutionary Biology, 2018, 45, 27-36.	1.1	12
9	Are wild insectivorous birds attracted to methyl-jasmonate-treated Pyrenean oak trees?. Behaviour, 2018, 155, 945-967.	0.8	5
10	Wild great and blue tits do not avoid chemical cues of predators when selecting cavities for roosting. PLoS ONE, 2018, 13, e0203269.	2.5	7
11	Editorial: The Importance of Olfaction in Intra- and Interspecific Communication. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	10
12	Insectivorous birds eavesdrop on the pheromones of their prey. PLoS ONE, 2018, 13, e0190415.	2.5	22
13	Role of chemical and visual cues of mammalian predators in nest defense in birds. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	19
14	Are naÃ⁻ve birds attracted to herbivore-induced plantÂdefences?. Behaviour, 2016, 153, 353-366.	0.8	17
15	Olfaction: An Overlooked Sensory Modality in Applied Ethology and Animal Welfare. Frontiers in Veterinary Science, 2015, 2, 69.	2.2	31
16	Evidence that the house finch (Carpodacus mexicanus) uses scent to avoid omnivore mammals. Revista Chilena De Historia Natural, 2015, 88, .	1.2	14
17	Are Female Starlings Able to Recognize the Scent of Their Offspring?. PLoS ONE, 2014, 9, e109505.	2.5	13
18	Birds exploit herbivoreâ€induced plant volatiles to locate herbivorous prey. Ecology Letters, 2013, 16, 1348-1355.	6.4	114

Luisa Amo

#	Article	IF	CITATIONS
19	Olfactory detection of dimethyl sulphide in a krill-eating Antarctic penguin. Marine Ecology - Progress Series, 2013, 474, 277-285.	1.9	37
20	Rollers smell the fear of nestlings. Biology Letters, 2012, 8, 502-504.	2.3	21
21	Male quality and conspecific scent preferences in the house finch, Carpodacus mexicanus. Animal Behaviour, 2012, 84, 1483-1489.	1.9	47
22	Sex recognition by odour and variation in the uropygial gland secretion in starlings. Journal of Animal Ecology, 2012, 81, 605-613.	2.8	102
23	Sleeping Birds Do Not Respond to Predator Odour. PLoS ONE, 2011, 6, e27576.	2.5	51
24	Smelling Out Predators is Innate in Birds. Ardea, 2011, 99, 177-184.	0.6	65
25	Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis. Die Naturwissenschaften, 2008, 95, 293-300.	1.6	65
26	Ultravioletâ€blue reflectance of some nestling plumage patches mediates parental favouritism in great tits <i>Parus major</i> . Journal of Avian Biology, 2008, 39, 277-282.	1.2	41
27	Predator odour recognition and avoidance in a songbird. Functional Ecology, 2008, 22, 289-293.	3.6	144
28	Refuge use: A conflict between avoiding predation and losing mass in lizards. Physiology and Behavior, 2007, 90, 334-343.	2.1	66
29	Habitat deterioration affects body condition of lizards: A behavioral approach with Iberolacerta cyreni lizards inhabiting ski resorts. Biological Conservation, 2007, 135, 77-85.	4.1	69
30	Habitat deterioration affects antipredatory behavior, body condition, and parasite load of female <i>Psammodromus algirus</i> lizards. Canadian Journal of Zoology, 2007, 85, 743-751.	1.0	24
31	Pregnant female lizardsIberolacerta cyreni adjust refuge use to decrease thermal costs for their body condition and cell-mediated immune response. Journal of Experimental Zoology, 2007, 307A, 106-112.	1.2	12
32	Chemical ornaments of male lizards Psammodromus algirus may reveal their parasite load and health state to females. Behavioral Ecology and Sociobiology, 2007, 62, 173-179.	1.4	72
33	Natural oak forest vs. ancient pine plantations: lizard microhabitat use may explain the effects of ancient reforestations on distribution and conservation of Iberian lizards. Biodiversity and Conservation, 2007, 16, 3409-3422.	2.6	31
34	Nature-based tourism as a form of predation risk affects body condition and health state of Podarcis muralis lizards. Biological Conservation, 2006, 131, 402-409.	4.1	100
35	Can Wall Lizards Combine Chemical and Visual Cues to Discriminate Predatory from Non-Predatory Snakes Inside Refuges?. Ethology, 2006, 112, 478-484.	1.1	37
36	Reliable Signaling By Chemical Cues Of Male Traits And Health State In Male Lizards, Lacerta monticola. Journal of Chemical Ecology, 2006, 32, 473-488.	1.8	110

Luisa Amo

#	Article	IF	CITATIONS
37	Sources of individual shy–bold variations in antipredator behaviour of male Iberian rock lizards. Animal Behaviour, 2005, 69, 1-9.	1.9	211
38	Prevalence and intensity of haemogregarine blood parasites and their mite vectors in the common wall lizard, Podarcis muralis. Parasitology Research, 2005, 96, 378-381.	1.6	65
39	Prevalence and intensity of blood and intestinal parasites in a field population of a Mediterranean lizard, Lacerta lepida. Parasitology Research, 2005, 96, 413-417.	1.6	39
40	Chemosensory Recognition of Its Lizard Prey by the Ambush Smooth Snake, Coronella austriaca. Journal of Herpetology, 2004, 38, 451-454.	0.5	12
41	Wall lizards combine chemical and visual cues of ambush snake predators to avoid overestimating risk inside refuges. Animal Behaviour, 2004, 67, 647-653.	1.9	94
42	Double gametocyte infections in apicomplexan parasites of birds and reptiles. Parasitology Research, 2004, 94, 155-7.	1.6	13
43	Prevalence and intensity of haemogregarinid blood parasites in a population of the Iberian rock lizard, Lacerta monticola. Parasitology Research, 2004, 94, 290-293.	1.6	52
44	Trade-offs in the choice of refuges by common wall lizards: do thermal costs affect preferences for predator-free refuges?. Canadian Journal of Zoology, 2004, 82, 897-901.	1.0	14
45	Chemosensory Recognition and Behavioral Responses of Wall Lizards, Podarcis muralis, to Scents of Snakes that Pose Different Risks of Predation. Copeia, 2004, 2004, 691-696.	1.3	32
46	Thermal dependence of chemical assessment of predation risk affects the ability of wall lizards, Podarcis muralis, to avoid unsafe refuges. Physiology and Behavior, 2004, 82, 913-918.	2.1	9
47	Risk Level and Thermal Costs Affect the Choice of Escape Strategy and Refuge Use in the Wall Lizard, Podarcis muralis. Copeia, 2003, 2003, 899-905.	1.3	27