List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9393561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A method to estimate the size of single-chain nanoparticles under severe crowding conditions. RSC Advances, 2022, 12, 1571-1575.	3.6	1
2	Disentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scattering. Macromolecules, 2022, 55, 2320-2332.	4.8	5
3	Intra- vs Intermolecular Cross-Links in Poly(methyl methacrylate) Networks Containing Enamine Bonds. Macromolecules, 2022, 55, 3627-3636.	4.8	3
4	Selfâ€Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angewandte Chemie - International Edition, 2021, 60, 3534-3539.	13.8	13
5	Triggering Forces at the Nanoscale: Technologies for Singleâ€Chain Mechanical Activation and Manipulation. Macromolecular Rapid Communications, 2021, 42, e2000654.	3.9	11
6	Selfâ€Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angewandte Chemie, 2021, 133, 3576-3581.	2.0	4
7	Dynamic Processes and Mechanisms Involved in Relaxations of Single-Chain Nano-Particle Melts. Polymers, 2021, 13, 2316.	4.5	5
8	Significant effect of intra-chain distribution of catalytic sites on catalytic activity in "clickase― single-chain nanoparticles. Materials Letters, 2021, 304, 130622.	2.6	3
9	Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers, 2021, 13, 293.	4.5	10
10	Collective Motions and Mechanical Response of a Bulk of Single-Chain Nano-Particles Synthesized by Click-Chemistry. Polymers, 2021, 13, 50.	4.5	7
11	Water dynamics and self-assembly of single-chain nanoparticles in concentrated solutions. Soft Matter, 2020, 16, 9738-9745.	2.7	4
12	Structure and Dynamics of Irreversible Single-Chain Nanoparticles in Dilute Solution. A Neutron Scattering Investigation. Macromolecules, 2020, 53, 8068-8082.	4.8	7
13	Steering alkyne homocoupling with on-surface synthesized metal–organic complexes. Chemical Communications, 2020, 56, 8659-8662.	4.1	6
14	Single-chain nanoparticles: opportunities provided by internal and external confinement. Materials Horizons, 2020, 7, 2292-2313.	12.2	72
15	Melts of single-chain nanoparticles: A neutron scattering investigation. Journal of Applied Physics, 2020, 127, .	2.5	11
16	Synthesis of Singleâ€Ring Nanoparticles Mimicking Natural Cyclotides by a Stepwise Foldingâ€Activationâ€Collapse Process. Macromolecular Rapid Communications, 2019, 40, 1800491.	3.9	18
17	Controlling the stereospecific bonding motif of Au–thiolate links. Nanoscale, 2019, 11, 15567-15575.	5.6	7
18	Glassy Dynamics of an All-Polymer Nanocomposite Based on Polystyrene Single-Chain Nanoparticles. Macromolecules, 2019, 52, 6868-6877.	4.8	13

#	Article	IF	CITATIONS
19	Mesoscale Dynamics in Melts of Single-Chain Polymeric Nanoparticles. Macromolecules, 2019, 52, 6935-6942.	4.8	17
20	Effect of Molecular Crowding on Conformation and Interactions of Single-Chain Nanoparticles. Macromolecules, 2019, 52, 4295-4305.	4.8	16
21	Valuable structure-size relationships for tadpole-shaped single-chain nanoparticles with long and short flexible tails unveiled. Physical Chemistry Chemical Physics, 2019, 21, 10884-10887.	2.8	5
22	Glass-Transition Dynamics of Mixtures of Linear Poly(vinyl methyl ether) with Single-Chain Polymer Nanoparticles: Evidence of a New Type of Nanocomposite Materials. Polymers, 2019, 11, 533.	4.5	8
23	Brushes of elastic single-chain nanoparticles on flat surfaces. Polymer, 2019, 169, 207-214.	3.8	6
24	Facile Access to Completely Deuterated Singleâ€Chain Nanoparticles Enabled by Intramolecular Azide Photodecomposition. Macromolecular Rapid Communications, 2019, 40, 1900046.	3.9	15
25	Advances in the Phototriggered Synthesis of Single-Chain Polymer Nanoparticles. Polymers, 2019, 11, 1903.	4.5	11
26	Crowding the Environment of Single-Chain Nanoparticles: A Combined Study by SANS and Simulations. Macromolecules, 2018, 51, 1573-1585.	4.8	31
27	Mapping the Extra Solvent Power of Ionic Liquids for Monomers, Polymers, and Dry/Wet Globular Single-Chain Polymer Nanoparticles. Langmuir, 2018, 34, 3275-3282.	3.5	1
28	Excellent Stability in Water of Singleâ€Chain Nanoparticles against Chain Scission by Sonication. Macromolecular Rapid Communications, 2018, 39, e1700675.	3.9	7
29	Effect of chain stiffness on the structure of single-chain polymer nanoparticles. Journal of Physics Condensed Matter, 2018, 30, 034001.	1.8	15
30	Active quinine-based films able to release antimicrobial compounds via melt quaternization at low temperature. Journal of Materials Chemistry B, 2018, 6, 98-104.	5.8	3
31	Photoactivation of Aggregation-Induced Emission Molecules for Fast and Efficient Synthesis of Highly Fluorescent Single-Chain Nanoparticles. ACS Omega, 2018, 3, 15193-15199.	3.5	8
32	Enzyme-mimetic synthesis of PEDOT from self-folded iron-containing single-chain nanoparticles. European Polymer Journal, 2018, 109, 447-452.	5.4	15
33	Local Domain Size in Single-Chain Polymer Nanoparticles. ACS Omega, 2018, 3, 8648-8654.	3.5	17
34	Ultrafiltration of single-chain polymer nanoparticles through nanopores and nanoslits. Polymer, 2018, 148, 61-67.	3.8	9
35	Folding Single Chains to Single-Chain Nanoparticles via Reversible Interactions: What Size Reduction Can One Expect?. Macromolecules, 2017, 50, 1732-1739.	4.8	49
36	The Role of the Topological Constraints in the Chain Dynamics in All-Polymer Nanocomposites. Macromolecules, 2017, 50, 1719-1731.	4.8	31

#	Article	IF	CITATIONS
37	Size of Elastic Single-Chain Nanoparticles in Solution and on Surfaces. Macromolecules, 2017, 50, 6323-6331.	4.8	23
38	Advances in Fluorescent Single-Chain Nanoparticles. Molecules, 2017, 22, 1819.	3.8	38
39	Advances in Single-Chain Nanoparticles for Catalysis Applications. Nanomaterials, 2017, 7, 341.	4.1	101
40	A Solventâ€Based Strategy for Tuning the Internal Structure of Metalloâ€Folded Singleâ€Chain Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 1060-1065.	3.9	39
41	Polymers: Electrochemical Formation of Nanostructured Conducting Polymers. , 2016, , 962-968.		0
42	Structure and dynamics of single-chain nano-particles in solution. Polymer, 2016, 105, 532-544.	3.8	44
43	An unexpected route to aldehyde-decorated single-chain nanoparticles from azides. Polymer Chemistry, 2016, 7, 6570-6574.	3.9	12
44	Tunable slow dynamics in a new class of soft colloids. Soft Matter, 2016, 12, 9039-9046.	2.7	12
45	A Useful Methodology for Determining the Compaction Degree of Singleâ€Chain Nanoparticles by Conventional SEC. Particle and Particle Systems Characterization, 2016, 33, 373-381.	2.3	10
46	Recent bioinspired applications of singleâ€chain nanoparticles. Polymer International, 2016, 65, 855-860.	3.1	66
47	Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions. Journal of Physical Chemistry Letters, 2016, 7, 838-844.	4.6	64
48	Single Chain Dynamic Structure Factor of Linear Polymers in an All-Polymer Nano-Composite. Macromolecules, 2016, 49, 2354-2364.	4.8	36
49	Merging of Zwitterionic ROP and Photoactivated Thiol–Yne Coupling for the Synthesis of Polyether Single-Chain Nanoparticles. Macromolecules, 2016, 49, 90-97.	4.8	17
50	Efficient Synthesis of Single-Chain Globules Mimicking the Morphology and Polymerase Activity of Metalloenzymes. Macromolecular Rapid Communications, 2015, 36, 1592-1597.	3.9	52
51	Efficient Synthesis of Single-Chain Polymer Nanoparticles <i>via</i> Amide Formation. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	17
52	Zwitterionic Ring-Opening Copolymerization of Tetrahydrofuran and Glycidyl Phenyl Ether with B(C ₆ F ₅) ₃ . Macromolecules, 2015, 48, 1664-1672.	4.8	29
53	Advances in single chain technology. Chemical Society Reviews, 2015, 44, 6122-6142.	38.1	217
54	A simple, fast and highly sensitive colorimetric detection of zein in aqueous ethanol via zein–pyridine–gold interactions. Chemical Communications, 2015, 51, 15736-15738.	4.1	32

#	Article	IF	CITATIONS
55	Zwitterionic ring-opening polymerization for the facile, efficient and versatile grafting of functional polyethers onto graphene sheets. European Polymer Journal, 2015, 73, 413-422.	5.4	3
56	Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality. Soft Matter, 2015, 11, 1369-1375.	2.7	58
57	Singleâ€Chain Polymer Nanoparticles via Nonâ€Covalent and Dynamic Covalent Bonds. Particle and Particle Systems Characterization, 2014, 31, 11-23.	2.3	78
58	Efficient Route to Compact Single-Chain Nanoparticles: Photoactivated Synthesis via Thiol–Yne Coupling Reaction. Macromolecules, 2014, 47, 8270-8280.	4.8	77
59	Zwitterionic polymerization of glycidyl monomers to cyclic polyethers with B(C ₆ F ₅) ₃ . Polymer Chemistry, 2014, 5, 6905-6908.	3.9	49
60	Bioinspired single-chain polymer nanoparticles. Polymer International, 2014, 63, 589-592.	3.1	60
61	pH-responsive single-chain polymer nanoparticles utilising dynamic covalent enamine bonds. Chemical Communications, 2014, 50, 1871-1874.	4.1	131
62	Single-chain nanoparticles vs. star, hyperbranched and dendrimeric polymers: effect of the nanoscopic architecture on the flow properties of diluted solutions. Soft Matter, 2014, 10, 9454-9459.	2.7	13
63	Multi-orthogonal folding of single polymer chains into soft nanoparticles. Soft Matter, 2014, 10, 4813-4821.	2.7	43
64	Microscopic Dynamics in Nanocomposites of Poly(ethylene oxide) and Poly(methyl methacrylate) Soft Nanoparticles: A Quasi-Elastic Neutron Scattering Study. Macromolecules, 2014, 47, 304-315.	4.8	28
65	How Far Are Single-Chain Polymer Nanoparticles in Solution from the Globular State?. ACS Macro Letters, 2014, 3, 767-772.	4.8	152
66	Investigation of a Nanocomposite of 75 wt % Poly(methyl methacrylate) Nanoparticles with 25 wt % Poly(ethylene oxide) Linear Chains: A Quasielatic Neutron Scattering, Calorimetric, and WAXS Study. Macromolecules, 2014, 47, 3005-3016.	4.8	18
67	Metallo-Folded Single-Chain Nanoparticles with Catalytic Selectivity. ACS Macro Letters, 2014, 3, 439-443.	4.8	130
68	Thermal Stability of Polymers Confined in Graphite Oxide. Macromolecules, 2013, 46, 1890-1898.	4.8	32
69	Endowing Single-Chain Polymer Nanoparticles with Enzyme-Mimetic Activity. ACS Macro Letters, 2013, 2, 775-779.	4.8	129
70	Advances in Click Chemistry for Single-Chain Nanoparticle Construction. Molecules, 2013, 18, 3339-3355.	3.8	113
71	Advantages of Orthogonal Folding of Single Polymer Chains to Soft Nanoparticles. Macromolecules, 2013, 46, 9748-9759.	4.8	89
72	"Michael―Nanocarriers Mimicking Transient-Binding Disordered Proteins. ACS Macro Letters, 2013, 2, 491-495.	4.8	106

#	Article	IF	CITATIONS
73	Design and Preparation of Singleâ€Chain Nanocarriers Mimicking Disordered Proteins for Combined Delivery of Dermal Bioactive Cargos. Macromolecular Rapid Communications, 2013, 34, 1681-1686.	3.9	82
74	Tunable uptake of poly(ethylene oxide) by graphite-oxide-based materials. Carbon, 2012, 50, 5232-5241.	10.3	22
75	Easy-dispersible poly(glycidyl phenyl ether)-functionalized graphene sheets obtained by reaction of "living―anionic polymer chains. Chemical Communications, 2012, 48, 2618.	4.1	12
76	Macromolecular Structure and Vibrational Dynamics of Confined Poly(ethylene oxide): From Subnanometer 2D-Intercalation into Graphite Oxide to Surface Adsorption onto Graphene Sheets. ACS Macro Letters, 2012, 1, 550-554.	4.8	38
77	Unimolecular Nanoparticles <i>via</i> Carbonâ€Carbon "Click―Chemistry for Allâ€Polymer Nanocomposites. Macromolecular Symposia, 2012, 321-322, 145-149.	0.7	6
78	Naked and Selfâ€Clickable Propargylicâ€Decorated Singleâ€Chain Nanoparticle Precursors via Redoxâ€Initiated RAFT Polymerization. Macromolecular Rapid Communications, 2012, 33, 1262-1267.	3.9	60
79	On the Apparent SEC Molecular Weight and Polydispersity Reduction upon Intramolecular Collapse of Polydisperse Chains to Unimolecular Nanoparticles. Macromolecules, 2011, 44, 8644-8649.	4.8	49
80	A Nanotechnology Pathway to Arresting Phase Separation in Soft Nanocomposites. Macromolecular Rapid Communications, 2011, 32, 573-578.	3.9	22
81	Metal-Free Polymethyl Methacrylate (PMMA) Nanoparticles by Enamine "Click―Chemistry at Room Temperature. Polymers, 2011, 3, 1673-1683.	4.5	30
82	Chemical sensing based on the plasmonic response of nanoparticle aggregation: anion sensing in nanoparticles stabilized by amino-functional ionic liquid. Frontiers of Physics in China, 2010, 5, 330-336.	1.0	11
83	A Versatile "Click―Chemistry Precursor of Functional Polystyrene Nanoparticles. Advanced Materials, 2010, 22, 3038-3041.	21.0	66
84	Design and stabilization of block copolymer micelles via phenol–pyridine hydrogen-bonding interactions. Polymer, 2010, 51, 1355-1362.	3.8	14
85	Magnetic force microscopy characterization of heat and current treated Fe40Ni38Mo4B18 amorphous ribbons. Journal of Magnetism and Magnetic Materials, 2010, 322, 1822-1827.	2.3	6
86	New Route to Polymeric Nanoparticles by Click Chemistry Using Bifunctional Cross‣inkers. Macromolecular Symposia, 2010, 296, 303-310.	0.7	36
87	Microstructural and Magnetic Properties of CoCu Nanoparticles Prepared by Wet Chemistry. Journal of Nanoscience and Nanotechnology, 2010, 10, 4246-4251.	0.9	1
88	Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (Bio)Sensors. Journal of Sensors, 2009, 2009, 1-13.	1.1	40
89	SYNTHESIS OF FULLEROPYRROLIDINE PYRIDINIUM SALTS BY FACILE ANION EXCHANGE AND THEIR SOLUBILITY. Nano, 2009, 04, 299-302.	1.0	0
90	Phase diagrams in compressible weakly interacting all-polymer nanocomposites. Journal of Chemical Physics, 2009, 130, 084905.	3.0	16

#	Article	IF	CITATIONS
91	Emerging Multifunctional Nanostructures. Journal of Nanomaterials, 2009, 2009, 1-2.	2.7	0
92	Multiresponsive PEDOT–Ionic Liquid Materials for the Design of Surfaces with Switchable Wettability. Advanced Functional Materials, 2009, 19, 3326-3333.	14.9	73
93	Synthesis of 2â€(Selenophenâ€2â€yl)pyrroles and Their Electropolymerization to Electrochromic Nanofilms. Chemistry - A European Journal, 2009, 15, 6435-6445.	3.3	38
94	Kinetics of Core-Shell Nanoparticle Formation by Two-Dimensional Nuclear Magnetic Resonance. Macromolecular Rapid Communications, 2009, 30, 932-935.	3.9	4
95	Highly transparent electrochromic plastic device that changes to purple and to blue by increasing the potential. Solar Energy Materials and Solar Cells, 2009, 93, 2093-2097.	6.2	23
96	One-step growth of gold nanorods using a β-diketone reducing agent. Journal of Nanoparticle Research, 2009, 11, 1241-1245.	1.9	15
97	Enzymatic synthesis of waterâ€soluble conducting poly(3,4â€ethylenedioxythiophene): A simple enzyme immobilization strategy for recycling and reusing. Journal of Polymer Science Part A, 2009, 47, 306-309.	2.3	24
98	Electrochemical synthesis of PEDOT derivatives bearing imidazoliumâ€ionic liquid moieties. Journal of Polymer Science Part A, 2009, 47, 3010-3021.	2.3	47
99	Electrochemical deposition of ZnO in a room temperature ionic liquid: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide. Electrochemistry Communications, 2009, 11, 2184-2186.	4.7	48
100	Irreversible Thermochromic Behavior in Gold and Silver Nanorod/Polymeric Ionic Liquid Nanocomposite Films. ACS Applied Materials & Interfaces, 2009, 1, 348-352.	8.0	54
101	A thermoreversible supramolecular hydrogel inspired by poly(<i>N</i> ,Â <i>N</i> -dimethylacrylamide). Supramolecular Chemistry, 2009, 21, 581-584.	1.2	7
102	Synthesis and Spectroelectrochemical Characterization of an Electrochromic Phosphole-EDOT Copolymer: poly([1-phenyl-2,5-bis(2-thienyl)thioxophosphole]0.14 -co- [3,4-ethylendioxythiophene]0.86). Polymer Bulletin, 2008, 61, 713-724.	3.3	10
103	All-plastic distributed pressure sensors: taylor-made performance by electroactive materials design. Microsystem Technologies, 2008, 14, 1089-1097.	2.0	17
104	Nanoimprint lithography and surface modification as prospective technologies for heterogeneous integration. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3571-3575.	0.8	4
105	PEDOT:Poly(1â€vinylâ€3â€ethylimidazolium) dispersions as alternative materials for optoelectronic devices. Journal of Polymer Science Part A, 2008, 46, 3150-3154.	2.3	31
106	Phase diagram and entropic interaction parameter of athermal allâ€polymer nanocomposites. Polymers for Advanced Technologies, 2008, 19, 756-761.	3.2	16
107	Simultaneous synthesis of gold nanoparticles and conducting poly(3,4â€ethylenedioxythiophene) towards optoelectronic nanocomposites. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1451-1454.	1.8	22
108	Intramolecular Click Cycloaddition: An Efficient Roomâ€Temperature Route towards Bioconjugable Polymeric Nanoparticles. Macromolecular Rapid Communications, 2008, 29, 1156-1160.	3.9	99

#	Article	IF	CITATIONS
109	Impedance analysis and equivalent circuit of an all-plastic viologen based electrochromic device. Displays, 2008, 29, 401-407.	3.7	9
110	All-plastic electrochromic devices based on PEDOT as switchable optical attenuator in the near IR. Solar Energy Materials and Solar Cells, 2008, 92, 101-106.	6.2	71
111	Electro-optical analysis of PEDOT symmetrical electrochromic devices. Solar Energy Materials and Solar Cells, 2008, 92, 107-111.	6.2	28
112	Coinage Metal–Glutathione Thiolates as a New Class of Supramolecular Hydrogelators. Macromolecular Symposia, 2008, 266, 96-100.	0.7	24
113	Influence of the Introduction of Short Alkyl Chains in Poly(2-(2-Thienyl)-1 <i>H</i> -pyrrole) on Its Electrochromic Behavior. Macromolecules, 2008, 41, 6886-6894.	4.8	42
114	A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids. Journal of Materials Chemistry, 2008, 18, 5354.	6.7	61
115	Synthesis by RAFT and Ionic Responsiveness of Double Hydrophilic Block Copolymers Based on Ionic Liquid Monomer Units. Macromolecules, 2008, 41, 6299-6308.	4.8	185
116	Key role of entropy in nanoparticle dispersion: polystyrene-nanoparticle/linear-polystyrene nanocomposites as a model system. Physical Chemistry Chemical Physics, 2008, 10, 650-651.	2.8	30
117	Homogenization of Mutually Immiscible Polymers Using Nanoscale Effects: A Theoretical Study. Research Letters in Physical Chemistry, 2008, 2008, 1-4.	0.3	2
118	Electrochemical biosensor development for detection of L-Dopa levels in plasma during Parkinson illness. , 2008, , .		2
119	Combined Electrochromic and Plasmonic Optical Responses in Conducting Polymer/Metal Nanoparticle Films. Journal of Nanoscience and Nanotechnology, 2007, 7, 2938-2941.	0.9	59
120	Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes. Nanotechnology, 2007, 18, 215301.	2.6	19
121	NEW AMINE FUNCTIONAL IONIC LIQUID AS BUILDING BLOCK IN NANOTECHNOLOGY. Nano, 2007, 02, 169-173.	1.0	24
122	Design of all-plastic distributed pressure sensors based on electroactive materials. , 2007, , .		1
123	Synthesis and electrochemical study of narrow band gap conducting polymers based on 2,2′-dipyrroles linked with conjugated aza-spacers. Synthetic Metals, 2007, 157, 60-65.	3.9	15
124	First Enzymatic Synthesis of Water-Soluble Conducting Poly(3,4-ethylenedioxythiophene). Biomacromolecules, 2007, 8, 315-317.	5.4	74
125	Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films. Chemistry of Materials, 2007, 19, 2147-2149.	6.7	240

126 Electrical characterization of new electrochromic devices. , 2007, , .

#	Article	IF	CITATIONS
127	Gold–glutathione supramolecular hydrogels. Journal of Materials Chemistry, 2007, 17, 4843.	6.7	82
128	A new bifunctional template for the enzymatic synthesis of conducting polyaniline. Enzyme and Microbial Technology, 2007, 40, 1412-1421.	3.2	41
129	Orange to black electrochromic behaviour in poly(2-(2-thienyl)-1H-pyrrole) thin films. Electrochimica Acta, 2007, 52, 4784-4791.	5.2	46
130	Comparison of surface and bulk doping levels in chemical polypyrroles of low, medium and high conductivity. Surface and Interface Analysis, 2007, 39, 26-32.	1.8	46
131	Nanocrystal-Based Luminescent Composites for Nanoimprinting Lithography. Small, 2007, 3, 822-828.	10.0	55
132	Assembled cation-exchange/anion-exchange polypyrrole layers as new simplified artificial muscles. Polymers for Advanced Technologies, 2007, 18, 64-66.	3.2	9
133	Ionic Liquid Immobilized Enzyme for Biocatalytic Synthesis of Conducting Polyaniline. Macromolecules, 2006, 39, 8547-8549.	4.8	62
134	Nanostructured Thermosetting Systems by Modification with Epoxidized Styreneâ ^{~,} Butadiene Star Block Copolymers. Effect of Epoxidation Degree. Macromolecules, 2006, 39, 2254-2261.	4.8	136
135	Structure–conductivity relationships in chemical polypyrroles of low, medium and high conductivity. Synthetic Metals, 2006, 156, 420-425.	3.9	110
136	Use of polymeric ionic liquids as stabilizers in the synthesis of polypyrrole organic dispersions. Synthetic Metals, 2006, 156, 1133-1138.	3.9	25
137	Nano-Objects on a Round Trip from Water to Organics in a Polymeric Ionic Liquid Vehicle. Small, 2006, 2, 507-512.	10.0	131
138	Conductivity enhancement in raw polypyrrole and polypyrrole nanoparticle dispersions. Polymers for Advanced Technologies, 2006, 17, 26-29.	3.2	23
139	Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochemistry Communications, 2006, 8, 482-488.	4.7	193
140	Chemical reduction method for industrial application of undoped polypyrrole electrodes in lithium-ion batteries. Journal of Power Sources, 2006, 160, 585-591.	7.8	39
141	Distributed Pressure Sensor Based on Electroactive Materials for Automotive Application. , 2006, , 249-260.		0
142	Variable optical attenuator made by using new electrochromic devices. , 2005, , .		0
143	<title>A self-supported polypyrrole artificial muscle: design optimization</title> ., 2005, , .		0
144	Binary poly(cyclohexyl methacrylate)/poly(styrene-co-vinyl phenol) blends: Comparisons of phase behaviour predictions using a single and a double interassociation model. Polymer, 2005, 46, 10741-10749.	3.8	4

#	Article	IF	CITATIONS
145	Synthesis and electrochemical characterization of dipyrroles separated by diphenyleneoxide and diphenylenesulfide spacers via the Trofimov reaction. Tetrahedron, 2005, 61, 7756-7762.	1.9	15
146	Synthesis of Novel Polycations Using the Chemistry of Ionic Liquids. Macromolecular Chemistry and Physics, 2005, 206, 299-304.	2.2	154
147	Nanostructured Thermosetting Systems from Epoxidized Styrene Butadiene Block Copolymers. Macromolecular Rapid Communications, 2005, 26, 982-985.	3.9	87
148	New Organic Dispersions of Conducting Polymers Using Polymeric Ionic Liquids as Stabilizers. Macromolecular Rapid Communications, 2005, 26, 1122-1126.	3.9	66
149	Characterization of novel all-plastic electrochromic devices: electro-optic and voltammetric response. Optical Engineering, 2004, 43, 2967.	1.0	9
150	CoFe2O4–polypyrrole (PPy) nanocomposites: new multifunctional materials. Nanotechnology, 2004, 15, S322-S327.	2.6	41
151	Synthesis of polyaniline and application in the design of formulations of conductive paints. Polymers for Advanced Technologies, 2004, 15, 560-563.	3.2	8
152	Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. Journal of Polymer Science Part A, 2004, 42, 208-212.	2.3	318
153	Synthesis and Characterization of Epoxidized Styrene-Butadiene Block Copolymers as Templates for Nanostructured Thermosets. Macromolecular Chemistry and Physics, 2004, 205, 987-996.	2.2	62
154	Electrically Conducting Gels Formed From Polyaniline/Ethylcellulose/m-Cresol Ternary Solutions. Macromolecular Chemistry and Physics, 2004, 205, 1379-1384.	2.2	9
155	A simplified all-polymer flexible electrochromic device. Electrochimica Acta, 2004, 49, 3555-3559.	5.2	154
156	Syneresis and fibrillation of conducting polyaniline gels. Polymer, 2003, 44, 5057-5059.	3.8	8
157	Synthesis and characterization of polypyrrole-graft-poly(ε-caprolactone) copolymers: new electrically conductive nanocomposites. Synthetic Metals, 2002, 126, 173-178.	3.9	64
158	Chemical oxidative polymerization of pyrrole in the presence of m-hydroxybenzoic acid- and m-hydroxycinnamic acid-related compounds. Synthetic Metals, 2002, 126, 111-116.	3.9	46
159	Highly Conducting Polyaniline Gels. Macromolecular Rapid Communications, 2002, 23, 659-663.	3.9	6
160	Low Surface Energy Conducting Polypyrrole Doped with a Fluorinated Counterion. Advanced Materials, 2002, 14, 749.	21.0	65
161	Novel Pyrrole End-Functional Macromonomers Prepared by Ring-Opening and Atom-Transfer Radical Polymerizations. Macromolecules, 2000, 33, 5846-5849.	4.8	52
162	Effect of monomer architecture on segmental interaction parameters of binary blends involving copolymers of cyclohexyl methacrylate, methyl methacrylate and styrene derivatives. Acta Polymerica, 1999, 50, 304-311.	0.9	2

#	Article	IF	CITATIONS
163	Polypyrrole-based conducting hot melt adhesives for EMI shielding applications. Synthetic Metals, 1999, 104, 107-111.	3.9	102
164	Modeling of the phase behavior of binary and ternary blends involving copolymers of styrene, methyl methacrylate and cyclohexyl methacrylate. Acta Polymerica, 1998, 49, 301-311.	0.9	13
165	Binary Poly(ethylene oxide)/Poly(methyl methacrylate-co-ethyl methacrylate) Blends:  Miscibility Predictions from Model Compound Mixtures vs Experimental Phase Behavior. Macromolecules, 1996, 29, 7038-7046.	4.8	7
166	Crystallization of poly(ethylene oxide) in binary blends containing poly(p-vinyl phenol). Polymer, 1995, 36, 3889-3897.	3.8	43
167	Hydrogen bonding in polymer systems involving poly(p-vinylphenol). 1. Binary blends with poly(ethyl) Tj ETQq1 1	0.784314	rgBT /Over
168	Hydrogen bonding in polymer systems involving poly(p-vinylphenol). 2. Ternary blends with poly(ethyl) Tj ETQq0 C	0 q.rgBT /C 4.8	Verlock 10
169	On the glass transition behavior, interaction energies, and hydrogen-bonding strengths of binary poly(p-vinylphenol)/polyether blends. Macromolecules, 1994, 27, 102-109.	4.8	65
170	Glass transition behaviour and interactions in poly(p-vinyl phenol)polymethacrylate blends. Polymer, 1993, 34, 95-102.	3.8	44
171	Miscibility behavior of ternary poly(methyl methacrylate)/poly(ethyl methacrylate)/poly(p-vinylphenol) blends. Macromolecules, 1993, 26, 2104-2110.	4.8	60
172	Group contribution method for predicting polymer-polymer miscibility: binary blends of poly(p-vinylphenol) and ester-containing polymers. Macromolecules, 1992, 25, 6909-6914.	4.8	9
173	A Theoretical Investigation of Polymer-Nanoparticles as Miscibility Improvers in All-Polymer Nanocomposites. Journal of Nano Research, 0, 2, 105-114.	0.8	7
174	Miscibility Enhancement in All-Polymer Nanocomposites Composed of Weakly-Charged Flexible Chains and Polar Nanoparticles. Journal of Nano Research, 0, 6, 123-132.	0.8	6
175	Nanoparticles: Single-Chain, Nanomedicine. , 0, , 5559-5568.		0