Bradley D Gelfand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9393131/publications.pdf

Version: 2024-02-01

32 papers 3,037 citations

331670 21 h-index 28 g-index

34 all docs

34 docs citations

times ranked

34

3784 citing authors

#	Article	IF	CITATIONS
1	The Dean Effect: An Aortic Arch Flow Artifact Mimicking Dissection. Radiology: Cardiothoracic Imaging, 2022, 4, .	2.5	1
2	Compartmentalized citrullination in Muller glial endfeet during retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	11
3	The Learning Curve of Murine Subretinal Injection Among Clinically Trained Ophthalmic Surgeons. Translational Vision Science and Technology, 2022, 11, 13.	2.2	3
4	Subretinal injection in mice to study retinal physiology and disease. Nature Protocols, 2022, 17, 1468-1485.	12.0	1
5	Cytoplasmic synthesis of endogenous <i>Alu</i> complementary DNA via reverse transcription and implications in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	36
6	Nucleoside reverse transcriptase inhibitors and Kamuvudines inhibit amyloid- \hat{l}^2 induced retinal pigmented epithelium degeneration. Signal Transduction and Targeted Therapy, 2021, 6, 149.	17.1	16
7	<i>Alu</i> complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity. Science Advances, 2021, 7, eabj3658.	10.3	23
8	TMEM97 ablation aggravates oxidant-induced retinal degeneration. Cellular Signalling, 2021, 86, 110078.	3.6	8
9	Identification of fluoxetine as a direct NLRP3 inhibitor to treat atrophic macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
10	A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nature Communications, 2021, 12, 6207.	12.8	30
11	DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retrotransposon RNAs. Science Immunology, 2021, 6, eabi4493.	11.9	24
12	A Clinical Metabolite of Azidothymidine Inhibits Experimental Choroidal Neovascularization and Retinal Pigmented Epithelium Degeneration. , 2020, 61, 4.		10
13	Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nature Communications, 2020, 11, 4737.	12.8	31
14	Chronic Dicer1 deficiency promotes atrophic and neovascular outer retinal pathologies in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2579-2587.	7.1	28
15	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	30.7	205
16	RF/6A Chorioretinal Cells Do Not Display Key Endothelial Phenotypes. , 2018, 59, 5795.		18
17	A Revised Hemodynamic Theory of Age-Related Macular Degeneration. Trends in Molecular Medicine, 2016, 22, 656-670.	6.7	45
18	Human $\lg G1$ antibodies suppress angiogenesis in a target-independent manner. Signal Transduction and Targeted Therapy, 2016, 1, .	17.1	30

#	Article	IF	CITATIONS
19	Intravenous immune globulin suppresses angiogenesis in mice and humans. Signal Transduction and Targeted Therapy, 2016, $1,\dots$	17.1	23
20	Nucleoside Reverse Transcriptase Inhibitors Suppress Laser-Induced Choroidal Neovascularization in Mice., 2015, 56, 7122.		32
21	Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome. Cell Reports, 2015, 11, 1686-1693.	6.4	78
22	IL-18 is not therapeutic for neovascular age-related macular degeneration. Nature Medicine, 2014, 20, 1372-1375.	30.7	37
23	DICER1/ <i>Alu</i> RNA dysmetabolism induces Caspase-8–mediated cell death in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16082-16087.	7.1	79
24	Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science, 2014, 346, 1000-1003.	12.6	189
25	Immunology of age-related macular degeneration. Nature Reviews Immunology, 2013, 13, 438-451.	22.7	515
26	TLR-Independent and P2X7-Dependent Signaling Mediate <i>Alu</i> RNA-Induced NLRP3 Inflammasome Activation in Geographic Atrophy., 2013, 54, 7395.		138
27	Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3. Molecular Therapy, 2012, 20, 101-108.	8.2	86
28	ERK1/2 activation is a therapeutic target in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13781-13786.	7.1	98
29	DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88. Cell, 2012, 149, 847-859.	28.9	526
30	DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature, 2011, 471, 325-330.	27.8	573
31	Hemodynamic Activation of \hat{l}^2 -Catenin and T-Cell-Specific Transcription Factor Signaling in Vascular Endothelium Regulates Fibronectin Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1625-1633.	2.4	51
32	Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI. Journal of Magnetic Resonance Imaging, 2006, 24, 1386-1392.	3.4	50