Chang H Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9392659/publications.pdf

Version: 2024-02-01

19657 19749 14,420 134 61 117 citations h-index g-index papers 136 136 136 17222 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunology, 2021, 14, 317-330.	6.0	76
2	A ligand-independent fast function of RARα promotes exit from metabolic quiescence upon T cell activation and controls T cell differentiation. Mucosal Immunology, 2021, 14, 100-112.	6.0	7
3	IL-4–BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy. Journal of Allergy and Clinical Immunology, 2021, 147, 280-295.	2.9	23
4	The Butyrate-Producing Bacterium <i>Clostridium butyricum</i> Suppresses <i>Clostridioides difficile</i> Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms. Journal of Immunology, 2021, 206, 1576-1585.	0.8	47
5	Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellular and Molecular Immunology, 2021, 18, 1161-1171.	10.5	160
6	Regulation of common neurological disorders by gut microbial metabolites. Experimental and Molecular Medicine, 2021, 53, 1821-1833.	7.7	35
7	Single-Cell Transcriptome Analysis of Colon Cancer Cell Response to 5-Fluorouracil-Induced DNA Damage. Cell Reports, 2020, 32, 108077.	6.4	40
8	BATF regulates innate lymphoid cell hematopoiesis and homeostasis. Science Immunology, 2020, 5, .	11.9	18
9	Weak Microbial Metabolites: a Treasure Trove for Using Biomimicry to Discover and Optimize Drugs. Molecular Pharmacology, 2020, 98, 343-349.	2.3	6
10	Periarteriolar stroma cells guide T cells from the red to the white pulp in the spleen. Cellular and Molecular Immunology, 2020, 17, 1019-1021.	10.5	7
11	Regulatory T-Cells and Th17 Cells in Tumor Microenvironment. , 2020, , 91-106.		1
12	Control of Tissue-Resident Invariant NKT Cells by Vitamin A Metabolites and P2X7-Mediated Cell Death. Journal of Immunology, 2019, 203, 1189-1197.	0.8	15
13	Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Scientific Reports, 2019, 9, 8837.	3.3	104
14	Differential food proteinâ€induced inflammatory responses in swine lines selected for reactivity to soy antigens. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1566-1569.	5.7	4
15	Immune regulation by microbiome metabolites. Immunology, 2018, 154, 220-229.	4.4	223
16	Microbial metabolites, shortâ€chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. European Journal of Immunology, 2018, 48, 1235-1247.	2.9	68
17	Microbiota or short-chain fatty acids: which regulates diabetes?. Cellular and Molecular Immunology, 2018, 15, 88-91.	10.5	114
18	Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the $Benzo[\langle i\rangle c\langle i\rangle]$ pyrrolo [2,3- $\langle i\rangle h\langle i\rangle$][1,6] naphthyridin-5-one (BPN) Series. Journal of Medicinal Chemistry, 2018, 61, 10440-10462.	6.4	14

#	Article	IF	CITATIONS
19	RARÎ \pm supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nature Communications, 2018, 9, 3896.	12.8	14
20	Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis. Immune Network, 2018, 18, e1.	3.6	20
21	Regulation of humoral immunity by gut microbial products. Gut Microbes, 2017, 8, 392-399.	9.8	60
22	Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunology, 2017, 10, 912-923.	6.0	40
23	Parkinson disease–associated <i>LRRK2 G2019S</i> transgene disrupts marrow myelopoiesis and peripheral Th17 response. Journal of Leukocyte Biology, 2017, 102, 1093-1102.	3.3	28
24	Succinylated Chitosan Derivative Has Local Protective Effects on Intestinal Inflammation. ACS Biomaterials Science and Engineering, 2017, 3, 1853-1860.	5.2	21
25	Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host and Microbe, 2016, 20, 202-214.	11.0	601
26	Colonization and effector functions of innate lymphoid cells in mucosal tissues. Microbes and Infection, 2016, 18, 604-614.	1.9	14
27	Outcomes of standard and tailored anti-tuberculosis regimens in patients with tuberculous pleural effusion. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1516-1521.	1.2	3
28	Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell–Mediated Ureteritis and Hydronephrosis. Journal of Immunology, 2016, 196, 2388-2400.	0.8	135
29	Migration and Tissue Tropism of Innate Lymphoid Cells. Trends in Immunology, 2016, 37, 68-79.	6.8	159
30	B cell-helping functions of gut microbial metabolites. Microbial Cell, 2016, 3, 529-531.	3.2	21
31	Trends and Disparities in Cardiovascular Mortality Among Survivors of Hodgkin Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, 748-752.	0.4	22
32	Cutting Edge: Progesterone Directly Upregulates Vitamin D Receptor Gene Expression for Efficient Regulation of T Cells by Calcitriol. Journal of Immunology, 2015, 194, 883-886.	0.8	24
33	Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity, 2015, 43, 107-119.	14.3	201
34	A Functional Relay from Progesterone to Vitamin D in the Immune System. DNA and Cell Biology, 2015, 34, 379-382.	1.9	9
35	A genetic variation in microRNA target site of KRT81 gene is associated with survival in early-stage non-small-cell lung cancer. Annals of Oncology, 2015, 26, 1142-1148.	1.2	22
36	Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunology, 2015, 8, 80-93.	6.0	824

#	Article	IF	CITATIONS
37	Human Tfh and Tfr Cells: Identification and Assessment of Their Migration Potential. Methods in Molecular Biology, 2015, 1291, 175-186.	0.9	5
38	Regulatory T Cells and Th17 Cells in Cancer Microenvironment., 2015,, 77-91.		1
39	Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Network, 2014, 14, 277.	3.6	473
40	Crawling of effector T cells on extracellular matrix: role of integrins in interstitial migration in inflamed tissues. Cellular and Molecular Immunology, 2014, 11, 1-4.	10.5	9
41	Comparison of the incidence between tuberculosis and nontuberculous mycobacterial disease after gastrectomy. Infection, 2014, 42, 697-704.	4.7	8
42	Predictive factors for tuberculosis in patients with a TB-PCR-negative bronchial aspirate. Infection, 2013, 41, 187-194.	4.7	6
43	Retinoic acid promotes the development of Arg1â€expressing dendritic cells for the regulation of Tâ€cell differentiation. European Journal of Immunology, 2013, 43, 967-978.	2.9	41
44	Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology, 2013, 145, 396-406.e10.	1.3	740
45	Host and Microbial Factors in Regulation of T Cells in the Intestine. Frontiers in Immunology, 2013, 4, 141.	4.8	11
46	BATF is required for normal expression of gut-homing receptors by T helper cells in response to retinoic acid. Journal of Experimental Medicine, 2013, 210, 475-489.	8.5	53
47	Th9 cell development requires a BATF-regulated transcriptional network. Journal of Clinical Investigation, 2013, 123, 4641-4653.	8.2	180
48	Progesterone suppresses the m <scp>TOR</scp> pathway and promotes generation of induced regulatory <scp>T</scp> cells with increased stability. European Journal of Immunology, 2012, 42, 2683-2696.	2.9	96
49	Optimal Population of FoxP3+ T Cells in Tumors Requires an Antigen Priming-Dependent Trafficking Receptor Switch. PLoS ONE, 2012, 7, e30793.	2.5	29
50	Expression of secreted and membrane-bound mucins in the airways of piglets experimentally infected with Mycoplasma hyopneumoniae. Veterinary Journal, 2012, 192, 120-122.	1.7	7
51	Trafficking Receptors and Migration of TH17 Cell Subsets. , 2011, , 203-216.		0
52	Differential Effects of Peptidoglycan Recognition Proteins on Experimental Atopic and Contact Dermatitis Mediated by Treg and Th17 Cells. PLoS ONE, 2011, 6, e24961.	2.5	47
53	Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets. BMC Immunology, 2011, 12, 53.	2.2	42
54	Retinoic Acid, Immunity, and Inflammation. Vitamins and Hormones, 2011, 86, 83-101.	1.7	53

#	Article	IF	CITATIONS
55	Progesterone Promotes Differentiation of Human Cord Blood Fetal T Cells into T Regulatory Cells but Suppresses Their Differentiation into Th17 Cells. Journal of Immunology, 2011, 187, 1778-1787.	0.8	164
56	Peptidoglycan Recognition Protein Pglyrp2 Protects Mice from Psoriasis-like Skin Inflammation by Promoting Regulatory T Cells and Limiting Th17 Responses. Journal of Immunology, 2011, 187, 5813-5823.	0.8	34
57	Complementary roles of retinoic acid and TGF- \hat{l}^21 in coordinated expression of mucosal integrins by T cells. Mucosal Immunology, 2011, 4, 66-82.	6.0	63
58	Homeostatic and pathogenic extramedullary hematopoiesis. Journal of Blood Medicine, 2010, 1, 13.	1.7	193
59	Retinoic Acid Determines the Precise Tissue Tropism of Inflammatory Th17 Cells in the Intestine. Journal of Immunology, 2010, 184, 5519-5526.	0.8	91
60	Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. Journal of Experimental Medicine, 2010, 207, 933-942.	8.5	202
61	FOXP3 and Its Role in the Immune System. Advances in Experimental Medicine and Biology, 2009, 665, 17-29.	1.6	68
62	Migration and Function of Th17 Cells. Inflammation and Allergy: Drug Targets, 2009, 8, 221-228.	1.8	53
63	FoxP3+ Regulatory T Cells Restrain Splenic Extramedullary Myelopoiesis via Suppression of Hemopoietic Cytokine-Producing T Cells. Journal of Immunology, 2009, 183, 6377-6386.	0.8	27
64	The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunology, 2009, 2, 173-183.	6.0	219
65	Expression of Mucins and Trefoil Factor Family Protein-1 in the Colon of Pigs Naturally Infected with Salmonella typhimurium. Journal of Comparative Pathology, 2009, 140, 38-42.	0.4	20
66	Reining in FoxP3 ⁺ regulatory T cells by the sphingosine 1â€phosphateâ€61P1 axis. Immunology and Cell Biology, 2009, 87, 502-504.	2.3	4
67	High and Low Vitamin A Therapies Induce Distinct FoxP3+ T-Cell Subsets and Effectively Control Intestinal Inflammation. Gastroenterology, 2009, 137, 1391-1402.e6.	1.3	78
68	Migration of Functionally Specialized T-Helper Cells: T _{FH} Cells, Th17 Cells and FoxP3 ⁺ T Cells. Translational Research in Biomedicine, 2009, , 67-82.	0.4	0
69	Roles of Retinoic Acid in Induction of Immunity and Immune Tolerance. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2008, 8, 289-294.	1.2	22
70	Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells. Journal of Immunology, 2008, 180, 122-129.	0.8	207
71	Regulation of FoxP <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mn>3</mml:mn><mml: 1-12.<="" 2008,="" and="" by="" cells="" clinical="" developmental="" immunology,="" retinoids.="" t="" th="" th17=""><th>mo3.8<th>nl:#&></th></th></mml:></mml:msup></mml:mrow></mml:math>	mo 3. 8 <th>nl:#&></th>	nl:# & >
72	FoxP3+ T Cells Undergo Conventional First Switch to Lymphoid Tissue Homing Receptors in Thymus but Accelerated Second Switch to Nonlymphoid Tissue Homing Receptors in Secondary Lymphoid Tissues. Journal of Immunology, 2007, 178, 301-311.	0.8	120

#	Article	IF	Citations
73	Molecular Targets of FoxP3+ Regulatory T Cells. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1136-1143.	2.4	11
74	Loss of IL-7 Receptor α on CD4+ T Cells Defines Terminally Differentiated B Cell-Helping Effector T Cells in a B Cell-Rich Lymphoid Tissue. Journal of Immunology, 2007, 179, 7448-7456.	0.8	52
75	Vitamin A Metabolites Induce Gut-Homing FoxP3+ Regulatory T Cells. Journal of Immunology, 2007, 179, 3724-3733.	0.8	275
76	Identification of a Chemokine Network That Recruits FoxP3+ Regulatory T Cells Into Chronically Inflamed Intestine. Gastroenterology, 2007, 132, 966-981.	1.3	59
77	Trafficking of FoxP3+ regulatory T cells: myths and facts. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 151-159.	2.3	8
78	Chemokines in Trafficking of Hematopoietic Stem and Progenitor Cells and Hematopoiesis. , 2007, , $119\text{-}138$.		1
79	Migration and function of FoxP3+ regulatory T cells in the hematolymphoid system. Experimental Hematology, 2006, 34, 1033-1040.	0.4	50
80	Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C. Experimental Hematology, 2006, 34, 1069-1077.	0.4	20
81	Regulation of Trafficking Receptor Expression in Human Forkhead Box P3+ Regulatory T Cells. Journal of Immunology, 2006, 177, 840-851.	0.8	143
82	Regulation of humoral immunity by FoxP3+regulatory T cells. Expert Review of Clinical Immunology, 2006, 2, 859-868.	3.0	3
83	The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Current Opinion in Hematology, 2005, 12, 298-304.	2.5	67
84	Chemokines and Their Receptors in Hematopoietic Cell Development and Functioning. Current Topics in Membranes, 2005, , 115-142.	0.9	1
85	Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunology, 2005, 6, 3.	2.2	73
86	Stromal Cell-Derived Factor-1/CXCL12 Selectively Counteracts Inhibitory Effects of Myelosuppressive Chemokines on Hematopoietic Progenitor Cell Proliferation In Vitro. Stem Cells and Development, 2005, 14, 199-203.	2.1	25
87	Cutting Edge: Direct Suppression of B Cells by CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2005, 175, 4180-4183.	0.8	532
88	Chemokine-Chemokine Receptor Network in Immune Cell Trafficking. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2004, 4, 343-361.	1.8	67
89	Unique gene expression program of human germinal center T helper cells. Blood, 2004, 104, 1952-1960.	1.4	236
90	Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell–driven B cell responses. Journal of Clinical Investigation, 2004, 114, 1640-1649.	8.2	230

#	Article	IF	Citations
91	Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell–driven B cell responses. Journal of Clinical Investigation, 2004, 114, 1640-1649.	8.2	158
92	Trafficking Potentials of Unconventional T Cell Subsets. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2004, 3, 321-330.	0.4	2
93	Chemokines in the systemic organization of immunity. Immunological Reviews, 2003, 195, 58-71.	6.0	326
94	Dendritic Cells Support Sequential Reprogramming of Chemoattractant Receptor Profiles During Naive to Effector T Cell Differentiation. Journal of Immunology, 2003, 171, 152-158.	0.8	70
95	Differential Chemokine Responses and Homing Patterns of Murine $TCR\hat{1}\pm\hat{1}^2$ NKT Cell Subsets. Journal of Immunology, 2003, 171, 2960-2969.	0.8	160
96	Transgenic Expression of Stromal Cell-Derived Factor-1/CXC Chemokine Ligand 12 Enhances Myeloid Progenitor Cell Survival/Antiapoptosis In Vitro in Response to Growth Factor Withdrawal and Enhances Myelopoiesis In Vivo. Journal of Immunology, 2003, 170, 421-429.	0.8	167
97	Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and \widehat{G} ti proteins and enhances engraftment of competitive, repopulating stem cells. Journal of Leukocyte Biology, 2003, 73, 630-638.	3.3	165
98	CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. Journal of Clinical Investigation, 2003, 111, 1001-1010.	8.2	292
99	Cytokine Control of Memory B Cell Homing Machinery. Journal of Immunology, 2002, 169, 1676-1682.	0.8	54
100	Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among $\hat{V}_{2}11+$ NKT cell subsets with distinct cytokine-producing capacity. Blood, 2002, 100, 11-16.	1.4	313
101	Distinct subsets of human $\hat{Vl}\pm 24$ -invariant NKT cells: cytokine responses and chemokine receptor expression. Trends in Immunology, 2002, 23, 516-519.	6.8	100
102	Nonpolarized memory T cells. Trends in Immunology, 2001, 22, 527-530.	6.8	31
103	Therapeutic Effect of Hyaluronic Acid on Experimental Osteoarthrosis of Ovine Temporomandibular Joint Journal of Veterinary Medical Science, 2001, 63, 1083-1089.	0.9	24
104	Separable effector T cell populations specialized for B cell help or tissue inflammation. Nature Immunology, 2001, 2, 876-881.	14.5	120
105	C-C Chemokine Receptor 4 Expression Defines a Major Subset of Circulating Nonintestinal Memory T Cells of Both Th1 and Th2 Potential. Journal of Immunology, 2001, 166, 103-111.	0.8	194
106	Subspecialization of Cxcr5+ T Cells. Journal of Experimental Medicine, 2001, 193, 1373-1382.	8.5	564
107	Chemokine Regulation of Hematopoiesis and the Involvement of Pertussis Toxinâ€Sensitive G _{αi} Proteins. Annals of the New York Academy of Sciences, 2001, 938, 117-128.	3.8	20
108	Bonzo/CXCR6 expression defines type 1–polarized T-cell subsets with extralymphoid tissue homing potential. Journal of Clinical Investigation, 2001, 107, 595-601.	8.2	311

#	Article	IF	CITATIONS
109	Rules of chemokine receptor association with T cell polarization in vivo. Journal of Clinical Investigation, 2001, 108, 1331-1339.	8.2	423
110	The CC Chemokine $CK\hat{l}^2-11/MIP-3\hat{l}^2/ELC/Exodus$ 3 Mediates Tumor Rejection of Murine Breast Cancer Cells Through NK Cells. Journal of Immunology, 2000, 164, 4025-4031.	0.8	119
111	TECK, an Efficacious Chemoattractant for Human Thymocytes, Uses GPR-9-6/CCR9 as a Specific Receptor. Blood, 1999, 94, 2533-2536.	1.4	7 5
112	Abnormal Chemokine-Induced Responses of Immature and Mature Hematopoietic Cells from Motheaten Mice Implicate the Protein Tyrosine Phosphatase Shp-1 in Chemokine Responses. Journal of Experimental Medicine, 1999, 190, 681-690.	8.5	90
113	Effects of CC, CXC, C, and CX3C Chemokines on Proliferation of Myeloid Progenitor Cells, and Insights into SDF-1-Induced Chemotaxis of Progenitorsa. Annals of the New York Academy of Sciences, 1999, 872, 142-163.	3.8	101
114	Thrombopoietin and Interleukin-3 Are Chemotactic and Chemokinetic Chemoattractants for a Factor-Dependent Hematopoietic Progenitor Cell Line. Annals of the New York Academy of Sciences, 1999, 872, 395-398.	3.8	2
115	CCR7 Ligands, SLC/6Ckine/Exodus2/TCA4 and CKβ-11/MIP-3β/ELC, Are Chemoattractants for CD56+CD16â^'NK Cells and Late Stage Lymphoid Progenitors. Cellular Immunology, 1999, 193, 226-235.	3.0	96
116	Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Experimental Hematology, 1999, 27, 1113-1123.	0.4	132
117	Cloning of BRAK, a Novel Divergent CXC Chemokine Preferentially Expressed in Normal versus Malignant Cells. Biochemical and Biophysical Research Communications, 1999, 255, 703-706.	2.1	177
118	Isolation of ALP, a Novel Divergent Murine CC Chemokine with a Unique Carboxy Terminal Extension. Biochemical and Biophysical Research Communications, 1999, 258, 737-740.	2.1	25
119	Chemokines: signal lamps for trafficking of T and B cells for development and effector function. Journal of Leukocyte Biology, 1999, 65, 6-15.	3.3	331
120	SLC/Exodus2/6Ckine/TCA4 induces chemotaxis of hematopoietic progenitor cells: differential activity of ligands of CCR7, CXCR3, or CXCR4 in chemotaxis vs. suppression of progenitor proliferation. Journal of Leukocyte Biology, 1999, 66, 455-461.	3.3	65
121	Chemokines and Hematopoiesis., 1999,, 263-291.		10
122	Altered responsiveness to chemokines due to targeted disruption of SHIP. Journal of Clinical Investigation, 1999, 104, 1751-1759.	8.2	94
123	TECK, an efficacious chemoattractant for human thymocytes, uses GPR-9-6/CCR9 as a specific receptor. Blood, 1999, 94, 2533-6.	1.4	20
124	Differential Chemotactic Behavior of Developing T Cells in Response to Thymic Chemokines. Blood, 1998, 91, 4434-4443.	1.4	154
125	In Vitro Behavior of Hematopoietic Progenitor Cells Under the Influence of Chemoattractants: Stromal Cell–Derived Factor-1, Steel Factor, and the Bone Marrow Environment. Blood, 1998, 91, 100-110.	1.4	390
126	In Vitro Behavior of Hematopoietic Progenitor Cells Under the Influence of Chemoattractants: Stromal Cell–Derived Factor-1, Steel Factor, and the Bone Marrow Environment. Blood, 1998, 91, 100-110.	1.4	27

#	ARTICLE	IF	CITATION
127	Differential Chemotactic Behavior of Developing T Cells in Response to Thymic Chemokines. Blood, 1998, 91, 4434-4443.	1.4	24
128	In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood, 1998, 91, 100-10.	1.4	109
129	CK beta-11/macrophage inflammatory protein-3 beta/EBI1-ligand chemokine is an efficacious chemoattractant for T and B cells. Journal of Immunology, 1998, 160, 2418-24.	0.8	83
130	Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood, 1998, 91, 4434-43.	1.4	42
131	Macrophage-inflammatory protein-3 beta/EBI1-ligand chemokine/CK beta-11, a CC chemokine, is a chemoattractant with a specificity for macrophage progenitors among myeloid progenitor cells. Journal of Immunology, 1998, 161, 2580-5.	0.8	60
132	Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene, 1997, 199, 293-301.	2.2	135
133	Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. Journal of Immunology, 1997, 159, 2554-8.	0.8	98
134	Genomic variation and segregation of equine infectious anemia virus during acute infection. Journal of Virology, 1992, 66, 3879-3882.	3.4	22