
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9392659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunology, 2015, 8, 80-93.	6.0	824
2	Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology, 2013, 145, 396-406.e10.	1.3	740
3	Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host and Microbe, 2016, 20, 202-214.	11.0	601
4	Subspecialization of Cxcr5+ T Cells. Journal of Experimental Medicine, 2001, 193, 1373-1382.	8.5	564
5	Cutting Edge: Direct Suppression of B Cells by CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2005, 175, 4180-4183.	0.8	532
6	Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation. Immune Network, 2014, 14, 277.	3.6	473
7	Rules of chemokine receptor association with T cell polarization in vivo. Journal of Clinical Investigation, 2001, 108, 1331-1339.	8.2	423
8	In Vitro Behavior of Hematopoietic Progenitor Cells Under the Influence of Chemoattractants: Stromal Cell–Derived Factor-1, Steel Factor, and the Bone Marrow Environment. Blood, 1998, 91, 100-110.	1.4	390
9	Chemokines: signal lamps for trafficking of T and B cells for development and effector function. Journal of Leukocyte Biology, 1999, 65, 6-15.	3.3	331
10	Chemokines in the systemic organization of immunity. Immunological Reviews, 2003, 195, 58-71.	6.0	326
11	Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among Vα24+Vβ11+ NKT cell subsets with distinct cytokine-producing capacity. Blood, 2002, 100, 11-16.	1.4	313
12	Bonzo/CXCR6 expression defines type 1–polarized T-cell subsets with extralymphoid tissue homing potential. Journal of Clinical Investigation, 2001, 107, 595-601.	8.2	311
13	CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. Journal of Clinical Investigation, 2003, 111, 1001-1010.	8.2	292
14	Vitamin A Metabolites Induce Gut-Homing FoxP3+ Regulatory T Cells. Journal of Immunology, 2007, 179, 3724-3733.	0.8	275
15	Unique gene expression program of human germinal center T helper cells. Blood, 2004, 104, 1952-1960.	1.4	236
16	Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cells cell responses. Journal of Clinical Investigation, 2004, 114, 1640-1649.	8.2	230
17	Immune regulation by microbiome metabolites. Immunology, 2018, 154, 220-229.	4.4	223
18	The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunology, 2009, 2, 173-183.	6.0	219

#	Article	IF	CITATIONS
19	Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells. Journal of Immunology, 2008, 180, 122-129.	0.8	207
20	Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. Journal of Experimental Medicine, 2010, 207, 933-942.	8.5	202
21	Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity, 2015, 43, 107-119.	14.3	201
22	C-C Chemokine Receptor 4 Expression Defines a Major Subset of Circulating Nonintestinal Memory T Cells of Both Th1 and Th2 Potential. Journal of Immunology, 2001, 166, 103-111.	0.8	194
23	Homeostatic and pathogenic extramedullary hematopoiesis. Journal of Blood Medicine, 2010, 1, 13.	1.7	193
24	Th9 cell development requires a BATF-regulated transcriptional network. Journal of Clinical Investigation, 2013, 123, 4641-4653.	8.2	180
25	Cloning of BRAK, a Novel Divergent CXC Chemokine Preferentially Expressed in Normal versus Malignant Cells. Biochemical and Biophysical Research Communications, 1999, 255, 703-706.	2.1	177
26	Transgenic Expression of Stromal Cell-Derived Factor-1/CXC Chemokine Ligand 12 Enhances Myeloid Progenitor Cell Survival/Antiapoptosis In Vitro in Response to Growth Factor Withdrawal and Enhances Myelopoiesis In Vivo. Journal of Immunology, 2003, 170, 421-429.	0.8	167
27	Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and Gî±i proteins and enhances engraftment of competitive, repopulating stem cells. Journal of Leukocyte Biology, 2003, 73, 630-638.	3.3	165
28	Progesterone Promotes Differentiation of Human Cord Blood Fetal T Cells into T Regulatory Cells but Suppresses Their Differentiation into Th17 Cells. Journal of Immunology, 2011, 187, 1778-1787.	0.8	164
29	Differential Chemokine Responses and Homing Patterns of Murine TCRαβ NKT Cell Subsets. Journal of Immunology, 2003, 171, 2960-2969.	0.8	160
30	Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellular and Molecular Immunology, 2021, 18, 1161-1171.	10.5	160
31	Migration and Tissue Tropism of Innate Lymphoid Cells. Trends in Immunology, 2016, 37, 68-79.	6.8	159
32	Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cellâ €"driven B cell responses. Journal of Clinical Investigation, 2004, 114, 1640-1649.	8.2	158
33	Differential Chemotactic Behavior of Developing T Cells in Response to Thymic Chemokines. Blood, 1998, 91, 4434-4443.	1.4	154
34	Regulation of Trafficking Receptor Expression in Human Forkhead Box P3+ Regulatory T Cells. Journal of Immunology, 2006, 177, 840-851.	0.8	143
35	Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene, 1997, 199, 293-301.	2.2	135
36	Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell–Mediated Ureteritis and Hydronephrosis. Journal of Immunology, 2016, 196, 2388-2400.	0.8	135

#	Article	IF	CITATIONS
37	Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Experimental Hematology, 1999, 27, 1113-1123.	0.4	132
38	Separable effector T cell populations specialized for B cell help or tissue inflammation. Nature Immunology, 2001, 2, 876-881.	14.5	120
39	FoxP3+ T Cells Undergo Conventional First Switch to Lymphoid Tissue Homing Receptors in Thymus but Accelerated Second Switch to Nonlymphoid Tissue Homing Receptors in Secondary Lymphoid Tissues. Journal of Immunology, 2007, 178, 301-311.	0.8	120
40	The CC Chemokine CKβ-11/MIP-3β/ELC/Exodus 3 Mediates Tumor Rejection of Murine Breast Cancer Cells Through NK Cells. Journal of Immunology, 2000, 164, 4025-4031.	0.8	119
41	Microbiota or short-chain fatty acids: which regulates diabetes?. Cellular and Molecular Immunology, 2018, 15, 88-91.	10.5	114
42	In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood, 1998, 91, 100-10.	1.4	109
43	Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Scientific Reports, 2019, 9, 8837.	3.3	104
44	Effects of CC, CXC, C, and CX3C Chemokines on Proliferation of Myeloid Progenitor Cells, and Insights into SDF-1-Induced Chemotaxis of Progenitorsa. Annals of the New York Academy of Sciences, 1999, 872, 142-163.	3.8	101
45	Distinct subsets of human Vα24-invariant NKT cells: cytokine responses and chemokine receptor expression. Trends in Immunology, 2002, 23, 516-519.	6.8	100
46	Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. Journal of Immunology, 1997, 159, 2554-8.	0.8	98
47	CCR7 Ligands, SLC/6Ckine/Exodus2/TCA4 and CKβ-11/MIP-3β/ELC, Are Chemoattractants for CD56+CD16â^'NK Cells and Late Stage Lymphoid Progenitors. Cellular Immunology, 1999, 193, 226-235.	3.0	96
48	Progesterone suppresses the m <scp>TOR</scp> pathway and promotes generation of induced regulatory <scp>T</scp> cells with increased stability. European Journal of Immunology, 2012, 42, 2683-2696.	2.9	96
49	Altered responsiveness to chemokines due to targeted disruption of SHIP. Journal of Clinical Investigation, 1999, 104, 1751-1759.	8.2	94
50	Retinoic Acid Determines the Precise Tissue Tropism of Inflammatory Th17 Cells in the Intestine. Journal of Immunology, 2010, 184, 5519-5526.	0.8	91
51	Abnormal Chemokine-Induced Responses of Immature and Mature Hematopoietic Cells from Motheaten Mice Implicate the Protein Tyrosine Phosphatase Shp-1 in Chemokine Responses. Journal of Experimental Medicine, 1999, 190, 681-690.	8.5	90
52	CK beta-11/macrophage inflammatory protein-3 beta/EBI1-ligand chemokine is an efficacious chemoattractant for T and B cells. Journal of Immunology, 1998, 160, 2418-24.	0.8	83
53	High and Low Vitamin A Therapies Induce Distinct FoxP3+ T-Cell Subsets and Effectively Control Intestinal Inflammation. Gastroenterology, 2009, 137, 1391-1402.e6.	1.3	78
54	Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunology, 2021, 14, 317-330.	6.0	76

#	Article	IF	CITATIONS
55	TECK, an Efficacious Chemoattractant for Human Thymocytes, Uses GPR-9-6/CCR9 as a Specific Receptor. Blood, 1999, 94, 2533-2536.	1.4	75
56	Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunology, 2005, 6, 3.	2.2	73
57	Dendritic Cells Support Sequential Reprogramming of Chemoattractant Receptor Profiles During Naive to Effector T Cell Differentiation. Journal of Immunology, 2003, 171, 152-158.	0.8	70
58	FOXP3 and Its Role in the Immune System. Advances in Experimental Medicine and Biology, 2009, 665, 17-29.	1.6	68
59	Microbial metabolites, shortâ€chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. European Journal of Immunology, 2018, 48, 1235-1247.	2.9	68
60	Chemokine-Chemokine Receptor Network in Immune Cell Trafficking. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2004, 4, 343-361.	1.8	67
61	The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Current Opinion in Hematology, 2005, 12, 298-304.	2.5	67
62	SLC/Exodus2/6Ckine/TCA4 induces chemotaxis of hematopoietic progenitor cells: differential activity of ligands of CCR7, CXCR3, or CXCR4 in chemotaxis vs. suppression of progenitor proliferation. Journal of Leukocyte Biology, 1999, 66, 455-461.	3.3	65
63	Complementary roles of retinoic acid and TGF-β1 in coordinated expression of mucosal integrins by T cells. Mucosal Immunology, 2011, 4, 66-82.	6.0	63
64	Regulation of humoral immunity by gut microbial products. Gut Microbes, 2017, 8, 392-399.	9.8	60
65	Macrophage-inflammatory protein-3 beta/EBI1-ligand chemokine/CK beta-11, a CC chemokine, is a chemoattractant with a specificity for macrophage progenitors among myeloid progenitor cells. Journal of Immunology, 1998, 161, 2580-5.	0.8	60
66	Identification of a Chemokine Network That Recruits FoxP3+ Regulatory T Cells Into Chronically Inflamed Intestine. Gastroenterology, 2007, 132, 966-981.	1.3	59
67	Cytokine Control of Memory B Cell Homing Machinery. Journal of Immunology, 2002, 169, 1676-1682.	0.8	54
68	Migration and Function of Th17 Cells. Inflammation and Allergy: Drug Targets, 2009, 8, 221-228.	1.8	53
69	Retinoic Acid, Immunity, and Inflammation. Vitamins and Hormones, 2011, 86, 83-101.	1.7	53
70	BATF is required for normal expression of gut-homing receptors by T helper cells in response to retinoic acid. Journal of Experimental Medicine, 2013, 210, 475-489.	8.5	53
71	Loss of IL-7 Receptor α on CD4+ T Cells Defines Terminally Differentiated B Cell-Helping Effector T Cells in a B Cell-Rich Lymphoid Tissue. Journal of Immunology, 2007, 179, 7448-7456.	0.8	52
72	Migration and function of FoxP3+ regulatory T cells in the hematolymphoid system. Experimental Hematology, 2006, 34, 1033-1040.	0.4	50

#	Article	IF	CITATIONS
73	Differential Effects of Peptidoglycan Recognition Proteins on Experimental Atopic and Contact Dermatitis Mediated by Treg and Th17 Cells. PLoS ONE, 2011, 6, e24961.	2.5	47
74	The Butyrate-Producing Bacterium <i>Clostridium butyricum</i> Suppresses <i>Clostridioides difficile</i> Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms. Journal of Immunology, 2021, 206, 1576-1585.	0.8	47
75	Regulation of FoxP <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mn>3</mml:mn><mm T Cells and Th17 Cells by Retinoids. Clinical and Developmental Immunology, 2008, 2008, 1-12.</mm </mml:msup></mml:mrow></mml:math 	l:mo 3. 8 <td>ml:#®></td>	ml: #® >
76	Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets. BMC Immunology, 2011, 12, 53.	2.2	42
77	Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood, 1998, 91, 4434-43.	1.4	42
78	Retinoic acid promotes the development of Arg1â€expressing dendritic cells for the regulation of Tâ€cell differentiation. European Journal of Immunology, 2013, 43, 967-978.	2.9	41
79	Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunology, 2017, 10, 912-923.	6.0	40
80	Single-Cell Transcriptome Analysis of Colon Cancer Cell Response to 5-Fluorouracil-Induced DNA Damage. Cell Reports, 2020, 32, 108077.	6.4	40
81	Regulation of common neurological disorders by gut microbial metabolites. Experimental and Molecular Medicine, 2021, 53, 1821-1833.	7.7	35
82	Peptidoglycan Recognition Protein Pglyrp2 Protects Mice from Psoriasis-like Skin Inflammation by Promoting Regulatory T Cells and Limiting Th17 Responses. Journal of Immunology, 2011, 187, 5813-5823.	0.8	34
83	Nonpolarized memory T cells. Trends in Immunology, 2001, 22, 527-530.	6.8	31
84	Optimal Population of FoxP3+ T Cells in Tumors Requires an Antigen Priming-Dependent Trafficking Receptor Switch. PLoS ONE, 2012, 7, e30793.	2.5	29
85	Parkinson disease–associated <i>LRRK2 G2019S</i> transgene disrupts marrow myelopoiesis and peripheral Th17 response. Journal of Leukocyte Biology, 2017, 102, 1093-1102.	3.3	28
86	FoxP3+ Regulatory T Cells Restrain Splenic Extramedullary Myelopoiesis via Suppression of Hemopoietic Cytokine-Producing T Cells. Journal of Immunology, 2009, 183, 6377-6386.	0.8	27
87	In Vitro Behavior of Hematopoietic Progenitor Cells Under the Influence of Chemoattractants: Stromal Cell–Derived Factor-1, Steel Factor, and the Bone Marrow Environment. Blood, 1998, 91, 100-110.	1.4	27
88	Isolation of ALP, a Novel Divergent Murine CC Chemokine with a Unique Carboxy Terminal Extension. Biochemical and Biophysical Research Communications, 1999, 258, 737-740.	2.1	25
89	Stromal Cell-Derived Factor-1/CXCL12 Selectively Counteracts Inhibitory Effects of Myelosuppressive Chemokines on Hematopoietic Progenitor Cell Proliferation In Vitro. Stem Cells and Development, 2005, 14, 199-203.	2.1	25
90	Therapeutic Effect of Hyaluronic Acid on Experimental Osteoarthrosis of Ovine Temporomandibular Joint Journal of Veterinary Medical Science, 2001, 63, 1083-1089.	0.9	24

#	Article	IF	CITATIONS
91	Cutting Edge: Progesterone Directly Upregulates Vitamin D Receptor Gene Expression for Efficient Regulation of T Cells by Calcitriol. Journal of Immunology, 2015, 194, 883-886.	0.8	24
92	Differential Chemotactic Behavior of Developing T Cells in Response to Thymic Chemokines. Blood, 1998, 91, 4434-4443.	1.4	24
93	IL-4–BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy. Journal of Allergy and Clinical Immunology, 2021, 147, 280-295.	2.9	23
94	Roles of Retinoic Acid in Induction of Immunity and Immune Tolerance. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2008, 8, 289-294.	1.2	22
95	Trends and Disparities in Cardiovascular Mortality Among Survivors of Hodgkin Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, 748-752.	0.4	22
96	A genetic variation in microRNA target site of KRT81 gene is associated with survival in early-stage non-small-cell lung cancer. Annals of Oncology, 2015, 26, 1142-1148.	1.2	22
97	Genomic variation and segregation of equine infectious anemia virus during acute infection. Journal of Virology, 1992, 66, 3879-3882.	3.4	22
98	Succinylated Chitosan Derivative Has Local Protective Effects on Intestinal Inflammation. ACS Biomaterials Science and Engineering, 2017, 3, 1853-1860.	5.2	21
99	B cell-helping functions of gut microbial metabolites. Microbial Cell, 2016, 3, 529-531.	3.2	21
100	Chemokine Regulation of Hematopoiesis and the Involvement of Pertussis Toxinâ€ S ensitive G _{αi} Proteins. Annals of the New York Academy of Sciences, 2001, 938, 117-128.	3.8	20
101	Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C. Experimental Hematology, 2006, 34, 1069-1077.	0.4	20
102	Expression of Mucins and Trefoil Factor Family Protein-1 in the Colon of Pigs Naturally Infected with Salmonella typhimurium. Journal of Comparative Pathology, 2009, 140, 38-42.	0.4	20
103	Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis. Immune Network, 2018, 18, e1.	3.6	20
104	TECK, an efficacious chemoattractant for human thymocytes, uses GPR-9-6/CCR9 as a specific receptor. Blood, 1999, 94, 2533-6.	1.4	20
105	BATF regulates innate lymphoid cell hematopoiesis and homeostasis. Science Immunology, 2020, 5, .	11.9	18
106	Control of Tissue-Resident Invariant NKT Cells by Vitamin A Metabolites and P2X7-Mediated Cell Death. Journal of Immunology, 2019, 203, 1189-1197.	0.8	15
107	Colonization and effector functions of innate lymphoid cells in mucosal tissues. Microbes and Infection, 2016, 18, 604-614.	1.9	14
108	Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the Benzo[<i>c</i>]pyrrolo[2,3- <i>h</i>][1,6]naphthyridin-5-one (BPN) Series. Journal of Medicinal Chemistry, 2018, 61, 10440-10462.	6.4	14

CHANG H KIM

#	Article	IF	CITATIONS
109	RARα supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nature Communications, 2018, 9, 3896.	12.8	14
110	Molecular Targets of FoxP3+ Regulatory T Cells. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1136-1143.	2.4	11
111	Host and Microbial Factors in Regulation of T Cells in the Intestine. Frontiers in Immunology, 2013, 4, 141.	4.8	11
112	Chemokines and Hematopoiesis. , 1999, , 263-291.		10
113	Crawling of effector T cells on extracellular matrix: role of integrins in interstitial migration in inflamed tissues. Cellular and Molecular Immunology, 2014, 11, 1-4.	10.5	9
114	A Functional Relay from Progesterone to Vitamin D in the Immune System. DNA and Cell Biology, 2015, 34, 379-382.	1.9	9
115	Trafficking of FoxP3+ regulatory T cells: myths and facts. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 151-159.	2.3	8
116	Comparison of the incidence between tuberculosis and nontuberculous mycobacterial disease after gastrectomy. Infection, 2014, 42, 697-704.	4.7	8
117	Expression of secreted and membrane-bound mucins in the airways of piglets experimentally infected with Mycoplasma hyopneumoniae. Veterinary Journal, 2012, 192, 120-122.	1.7	7
118	Periarteriolar stroma cells guide T cells from the red to the white pulp in the spleen. Cellular and Molecular Immunology, 2020, 17, 1019-1021.	10.5	7
119	A ligand-independent fast function of RARα promotes exit from metabolic quiescence upon T cell activation and controls T cell differentiation. Mucosal Immunology, 2021, 14, 100-112.	6.0	7
120	Predictive factors for tuberculosis in patients with a TB-PCR-negative bronchial aspirate. Infection, 2013, 41, 187-194.	4.7	6
121	Weak Microbial Metabolites: a Treasure Trove for Using Biomimicry to Discover and Optimize Drugs. Molecular Pharmacology, 2020, 98, 343-349.	2.3	6
122	Human Tfh and Tfr Cells: Identification and Assessment of Their Migration Potential. Methods in Molecular Biology, 2015, 1291, 175-186.	0.9	5
123	Reining in FoxP3 ⁺ regulatory T cells by the sphingosine 1â€phosphate‣1P1 axis. Immunology and Cell Biology, 2009, 87, 502-504.	2.3	4
124	Differential food proteinâ€induced inflammatory responses in swine lines selected for reactivity to soy antigens. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1566-1569.	5.7	4
125	Regulation of humoral immunity by FoxP3+regulatory T cells. Expert Review of Clinical Immunology, 2006, 2, 859-868.	3.0	3
126	Outcomes of standard and tailored anti-tuberculosis regimens in patients with tuberculous pleural effusion. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1516-1521.	1.2	3

#	Article	IF	CITATIONS
127	Thrombopoietin and Interleukin-3 Are Chemotactic and Chemokinetic Chemoattractants for a Factor-Dependent Hematopoietic Progenitor Cell Line. Annals of the New York Academy of Sciences, 1999, 872, 395-398.	3.8	2
128	Trafficking Potentials of Unconventional T Cell Subsets. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2004, 3, 321-330.	0.4	2
129	Chemokines and Their Receptors in Hematopoietic Cell Development and Functioning. Current Topics in Membranes, 2005, , 115-142.	0.9	1
130	Chemokines in Trafficking of Hematopoietic Stem and Progenitor Cells and Hematopoiesis. , 2007, , 119-138.		1
131	Regulatory T Cells and Th17 Cells in Cancer Microenvironment. , 2015, , 77-91.		1
132	Regulatory T-Cells and Th17 Cells in Tumor Microenvironment. , 2020, , 91-106.		1
133	Migration of Functionally Specialized T-Helper Cells: T _{FH} Cells, Th17 Cells and FoxP3 ⁺ T Cells. Translational Research in Biomedicine, 2009, , 67-82.	0.4	0
134	Trafficking Receptors and Migration of TH17 Cell Subsets. , 2011, , 203-216.		0