
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9391820/publications.pdf Version: 2024-02-01

ΖΗΠΗ ΧΑΝΟ

#	Article	IF	CITATIONS
1	Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 2014, 55, 313-318.	1.9	342
2	The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 2017, 3, 946-955.	9.3	164
3	Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theoretical and Applied Genetics, 2009, 118, 1173-1180.	3.6	150
4	Precise identification of two wheat–Thinopyrum intermedium substitutions reveals the compensation and rearrangement between wheat and Thinopyrum chromosomes. Molecular Breeding, 2015, 35, 1.	2.1	150
5	Oligonucleotide Probes for ND-FISH Analysis to Identify Rye and Wheat Chromosomes. Scientific Reports, 2015, 5, 10552.	3.3	138
6	Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics, 2020, 133, 1095-1107.	3.6	136
7	Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theoretical and Applied Genetics, 2013, 126, 265-274.	3.6	104
8	Developing New Oligo Probes to Distinguish Specific Chromosomal Segments and the A, B, D Genomes of Wheat (Triticum aestivum L.) Using ND-FISH. Frontiers in Plant Science, 2018, 9, 1104.	3.6	82
9	The <i>CentO</i> satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4875-83.	7.1	80
10	Chromosomal Location and Comparative Genomics Analysis of Powdery Mildew Resistance Gene Pm51 in a Putative Wheat-Thinopyrum ponticum Introgression Line. PLoS ONE, 2014, 9, e113455.	2.5	70
11	An efficient Oligoâ€FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant Journal, 2021, 105, 978-993.	5.7	58
12	Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 2019, 249, 663-675.	3.2	57
13	QTL Mapping and Validation of Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Humai 15. Frontiers in Plant Science, 2018, 9, 968.	3.6	54
14	Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 2008, 159, 249-258.	1.2	49
15	New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta, 2016, 244, 865-876.	3.2	45
16	Molecular cytogenetic characterization and disease resistance observation of wheat-Dasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas, 2006, 142, 80-85.	1.4	44
17	Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species. Molecular Cytogenetics, 2016, 9, 6.	0.9	43
18	Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica, 2011, 177, 169-177.	1.2	42

#	Article	IF	CITATIONS
19	Molecular Mapping of the Stripe Rust Resistance Gene <i>Yr69</i> on Wheat Chromosome 2AS. Plant Disease, 2016, 100, 1717-1724.	1.4	41
20	Precise identification of wheat $\hat{a} \in$ Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome, 2018, 61, 177-185.	2.0	40
21	Characterization of Stripe Rust Resistance Genes in the Wheat Cultivar Chuanmai45. International Journal of Molecular Sciences, 2016, 17, 601.	4.1	39
22	Sympatric speciation of wild emmer wheat driven by ecology and chromosomal rearrangements. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5955-5963.	7.1	39
23	Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas, 2006, 143, 47-54.	1.4	37
24	Extraordinarily conserved chromosomal synteny of <i>Citrus</i> species revealed by chromosomeâ€specific painting. Plant Journal, 2020, 103, 2225-2235.	5.7	33
25	Identification of QTLs for Stripe Rust Resistance in a Recombinant Inbred Line Population. International Journal of Molecular Sciences, 2019, 20, 3410.	4.1	32
26	Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes and Genomics, 2012, 34, 67-75.	1.4	31
27	Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, <i>Hordeum spontaneum</i> , at †Evolution Canyon', Mount Carmel, Israel. Molecular Ecology, 2009, 18, 2063-2075.	3.9	30
28	Introduction of Thinopyrum intermedium ssp. trichophorum chromosomes to wheat by trigeneric hybridization involving Triticum, Secale and Thinopyrum genera. Planta, 2017, 245, 1121-1135.	3.2	30
29	A novel QTL QTrl.saw-2D.2 associated with the total root length identified by linkage and association analyses in wheat (Triticum aestivum L.). Planta, 2019, 250, 129-143.	3.2	30
30	Introgression of a novel Thinopyrum intermedium St-chromosome-specific HMW-GS gene into wheat. Molecular Breeding, 2013, 31, 843-853.	2.1	29
31	Molecular characterization of a wheat -Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. Journal of Applied Genetics, 2011, 52, 279-285.	1.9	28
32	Characterization of wheat – <i>Secale africanum</i> introgression lines reveals evolutionary aspects of chromosome 1R in rye. Genome, 2012, 55, 765-774.	2.0	28
33	Characterization of Chromosomal Rearrangement in New Wheat—Thinopyrum intermedium Addition Lines Carrying Thinopyrum—Specific Grain Hardness Genes. Agronomy, 2019, 9, 18.	3.0	28
34	New ND-FISH-Positive Oligo Probes for Identifying Thinopyrum Chromosomes in Wheat Backgrounds. International Journal of Molecular Sciences, 2019, 20, 2031.	4.1	27
35	Diversified chromosomal distribution of tandemly repeated sequences revealed evolutionary trends in Secale (Poaceae). Plant Systematics and Evolution, 2010, 287, 49-56.	0.9	26
36	Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. International Journal of Molecular Sciences, 2015, 16, 2162-2173.	4.1	25

#	Article	IF	CITATIONS
37	Identification of Novel Chromosomal Aberrations Induced by 60Co-γ-Irradiation in Wheat-Dasypyrum villosum Lines. International Journal of Molecular Sciences, 2015, 16, 29787-29796.	4.1	24
38	Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Scientific Reports, 2019, 9, 4773.	3.3	24
39	Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism. Science Bulletin, 2008, 53, 58-69.	1.7	22
40	Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010, 147, 304-312.	1.4	22
41	Characterization of wheat yellow rust resistance gene <i>Yr17</i> using EST-SSR and rice syntenic region. Cereal Research Communications, 2011, 39, 88-99.	1.6	22
42	Identification of wheat-Secale africanum chromosome 2Rafr introgression lines with novel disease resistance and agronomic characteristics. Euphytica, 2013, 194, 197-205.	1.2	22
43	Molecular cytogenetic characterization of wheat–Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica, 2009, 167, 197-202.	1.2	21
44	The chromosome number, karyotype and genome size of the desert plant diploid Reaumuria soongorica (Pall.) Maxim. Plant Cell Reports, 2011, 30, 955-964.	5.6	20
45	Transcriptome Analysis of Interspecific Hybrid between <i>Brassica napus</i> and <i>B. rapa</i> Reveals Heterosis for Oil Rape Improvement. International Journal of Genomics, 2015, 2015, 1-11.	1.6	20
46	Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng 5Ns (5D) disomic substitution line with stripe rust resistance. Molecular Breeding, 2019, 39, 1.	2.1	20
47	A universal karyotypic system for hexaploid and diploid Avena species brings oat cytogenetics into the genomics era. BMC Plant Biology, 2021, 21, 213.	3.6	19
48	<i>Zanthoxylum-</i> specific whole genome duplication and recent activity of transposable elements in the highly repetitive paleotetraploid <i>Z. bungeanum</i> genome. Horticulture Research, 2021, 8, 205.	6.3	19
49	Molecular cytogenetic characterization of a new wheat Secale africanum 2Ra(2D) substitution line for resistance to stripe rust. Journal of Genetics, 2011, 90, 283-287.	0.7	18
50	Characterization of a new T2DS.2DL-?R translocation triticale ZH-1 with multiple resistances to diseases. Genetic Resources and Crop Evolution, 2012, 59, 1161-1168.	1.6	18
51	A Novel Wheat- <i>Dasypyrum breviaristatum </i> Substitution Line with Stripe Rust Resistance. Cytogenetic and Genome Research, 2014, 143, 280-287.	1.1	18
52	Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Systematics and Evolution, 2010, 288, 149-156.	0.9	17
53	Cytogenetic and molecular markers for detecting <i>Aegilops uniaristata</i> chromosomes in a wheat background. Genome, 2014, 57, 489-497.	2.0	17
54	Identification of α-gliadin genes in Dasypyrum in relation to evolution and breeding. Euphytica, 2009, 165, 155.	1.2	15

#	Article	IF	CITATIONS
55	A new long terminal repeat (LTR) sequence allows to identify J genome from JS and St genomes of Thinopyrum intermedium. Journal of Applied Genetics, 2011, 52, 31-33.	1.9	15
56	Molecular and cytogenetic identification of new wheat-Dasypyrum breviaristatum additions conferring resistance to stem rust and powdery mildew. Breeding Science, 2011, 61, 366-372.	1.9	15
57	Characterization of wheat-Secale africanum chromosome 5Ra derivatives carrying Secale specific genes for grain hardness. Planta, 2016, 243, 1203-1212.	3.2	15
58	Comparative FISH and molecular identification of new stripe rust resistant wheat-Thinopyrum introgression lines. Crop Journal, 2019, 7, 819-829.	5.2	15
59	New St-chromosome-specific molecular markers for identifying wheat–Thinopyrum intermedium derivative lines. Journal of Genetics, 2014, 93, 69-74.	0.7	14
60	Diversified Chromosome Rearrangements Detected in a Wheat‒Dasypyrum breviaristatum Substitution Line Induced by Gamma-Ray Irradiation. Plants, 2019, 8, 175.	3.5	14
61	Molecular dissection of Secale africanum chromosome 6Rafr in wheat enabled localization of genes for resistance to powdery mildew and stripe rust. BMC Plant Biology, 2020, 20, 134.	3.6	14
62	Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at "Evolution Canyonâ€; Israel. Genetica, 2011, 139, 1429-1438.	1.1	13
63	Molecular cytogenetic characterization of a novel wheat–Psathyrostachys huashanica Keng T3DS-5NsL•5NsS and T5DL-3DS•3DL dual translocation line with powdery mildew resistance. BMC Plant Biology, 2020, 20, 163.	3.6	12
64	MDC-Analyzer-facilitated combinatorial strategy for improving the activity and stability of halohydrin dehalogenase from Agrobacterium radiobacter AD1. Journal of Biotechnology, 2015, 206, 1-7.	3.8	11
65	Molecular identification of a new wheat-Thinopyrum intermediumssp.trichophorumaddition line for resistance to stripe rust. Cereal Research Communications, 2013, 41, 211-220.	1.6	10
66	Molecular and Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Derivatives with Post-Harvest Re-Growth Habit. Genes, 2015, 6, 1242-1255.	2.4	10
67	Improvement of the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by engineering C-terminal amino acids. Journal of Biotechnology, 2015, 212, 92-98.	3.8	10
68	New St-chromosome-specific molecular markers for identifying wheatThinopyrum intermedium derivative lines. Journal of Genetics, 2012, 91, e69-74.	0.7	10
69	Molecular Characterization of a HMW Glutenin Subunit Allele Providing Evidence for Silencing of x-type Gene on Glu-B1. Journal of Genetics and Genomics, 2006, 33, 929-936.	0.3	9
70	Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways. International Journal of Molecular Sciences, 2013, 14, 20478-20491.	4.1	9
71	Genetic diversity in common wheat lines revealed by fluorescence in situ hybridization. Plant Systematics and Evolution, 2019, 305, 247-254.	0.9	9
72	Development of Sequence-Tagged Site Marker Set for Identification of J, JS, and St Sub-genomes of Thinopyrum intermedium in Wheat Background. Frontiers in Plant Science, 2021, 12, 685216.	3.6	9

#	Article	IF	CITATIONS
73	Diversity and evolution of four dispersed repetitive DNA sequences in the genus Secale. Genome, 2011, 54, 285-300.	2.0	8
74	Chromosomal distribution of a new centromeric Ty3-gypsy retrotransposon sequence in Dasypyrum and related Triticeae species. Journal of Genetics, 2012, 91, 343-348.	0.7	8
75	Adaptive evolution of duplicated hsp17 genes in wild barley from microclimatically divergent sites of Israel. Genetics and Molecular Research, 2014, 13, 1220-1232.	0.2	8
76	Molecular and Cytogenetic Characterization of a Powdery Mildew-Resistant Wheat-Aegilops mutica Partial Amphiploid and Addition Line. Cytogenetic and Genome Research, 2015, 147, 186-194.	1.1	8
77	Molecular Cytogenetic Characterization of New Wheat—Dasypyrum breviaristatum Introgression Lines for Improving Grain Quality of Wheat. Frontiers in Plant Science, 2018, 9, 365.	3.6	8
78	Genome-Wide Distribution of Novel Ta-3A1 Mini-Satellite Repeats and Its Use for Chromosome Identification in Wheat and Related Species. Agronomy, 2019, 9, 60.	3.0	8
79	Molecular characterization of high molecular weight glutenin subunit allele 1Bx23 in common wheat introduced from hexaploid triticale. Hereditas, 2006, 143, 159-166.	1.4	7
80	Mutation Landscape of Base Substitutions, Duplications, and Deletions in the Representative Current Cholera Pandemic Strain. Genome Biology and Evolution, 2018, 10, 2072-2085.	2.5	7
81	Genetic Dissection of Adult Plant Resistance to Sharp Eyespot Using an Updated Genetic Map of Niavt14 × Xuzhou25 Winter Wheat Recombinant Inbred Line Population. Plant Disease, 2021, 105, 997-1005.	1.4	7
82	Fine mapping and candidate gene analysis of dwarf gene Rht14 in durum wheat (Triticum durum). Functional and Integrative Genomics, 2022, 22, 141.	3.5	7
83	Oligoâ€FISH Paints in Triticeae. Current Protocols, 2022, 2, e364.	2.9	7
84	DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites. Journal of Biotechnology, 2014, 192, 102-107.	3.8	6
85	Molecular cytogenetic characterization and phenotypic evaluation of new wheat–rye lines derived from hexaploid triticale â€~Certa'Â×Âcommon wheat hybrids. Plant Breeding, 2017, 136, 809-819.	1.9	6
86	Characterization of New Wheat- <i>Dasypyrum breviaristatum</i> Introgression Lines with Superior Gene(s) for Spike Length and Stripe Rust Resistance. Cytogenetic and Genome Research, 2018, 156, 117-125.	1.1	6
87	Molecular cytogenetic characterization of a new leaf rolling triticale. Genetics and Molecular Research, 2011, 10, 2953-2961.	0.2	5
88	Transcriptional abundance is not the single force driving the evolution of bacterial proteins. BMC Evolutionary Biology, 2013, 13, 162.	3.2	5
89	Molecular characteristics and inheritance of a chromosome segment from Psathyrostachys huashanica Keng in a wheat background. Genetic Resources and Crop Evolution, 2020, 67, 1245-1257.	1.6	5
90	Karyotyping Dasypyrum breviaristatum chromosomes with multiple oligonucleotide probes reveals the genomic divergence in Dasypyrum. Genome, 2021, 64, 789-800.	2.0	5

#	Article	IF	CITATIONS
91	Sequence variations of PDHA1 gene in Triticeae species allow for identifying wheat-alien introgression lines. Frontiers of Agriculture in China, 2010, 4, 137-144.	0.2	4
92	Characterization and phylogenetic analysis of α-gliadin gene sequences reveals significant genomic divergence in Triticeae species. Journal of Genetics, 2014, 93, 725-731.	0.7	4
93	Molecular Characterization of Sec2 Loci in Wheat—Secale africanum Derivatives Demonstrates Genomic Divergence of Secale Species. International Journal of Molecular Sciences, 2015, 16, 8324-8336.	4.1	4
94	Molecular and Cytogenetic Identification of Stem Rust Resistant Wheat– <i>Thinopyrum intermedium</i> Introgression Lines. Plant Disease, 2022, 106, 2447-2454.	1.4	4
95	Genetic Diversity Assessment of the International Maize and Wheat Improvement Center and Chinese Wheat Core Germplasms by Non-Denaturing Fluorescence In Situ Hybridization. Plants, 2022, 11, 1403.	3.5	4
96	The Physical Location of Stripe Rust Resistance Genes on Chromosome 6 of Rye (Secale cereale L.) AR106BONE. Frontiers in Plant Science, 0, 13, .	3.6	4
97	Isolation and chromosomal localization of new MITE-like sequences from Secale. Biologia (Poland), 2012, 67, 126-131.	1.5	3
98	Evaluation of wheat seeds by terahertz imaging. , 2013, , .		3
99	Physical mapping of chromosome 7J and a purple coleoptile gene from Thinopyrum intermedium in the common wheat background. Planta, 2021, 253, 22.	3.2	3
100	Molecular Cytogenetic and Agronomic Characterization of the Similarities and Differences Between Wheat–Leymus mollis Trin. and Wheat–Psathyrostachys huashanica Keng 3Ns (3D) Substitution Lines. Frontiers in Plant Science, 2021, 12, 644896.	3.6	3
101	Investigation on the electronically excited state properties of multiwalled carbon nanotube (MDDA) in solution. Science in China Series B: Chemistry, 2006, 49, 97-102.	0.8	2
102	Determination of Nine Microelements in <i>Nostoc commune</i> Vauch by ICP-AES. Advanced Materials Research, 2012, 518-523, 5020-5023.	0.3	2
103	Heat Shock Proteins in Wild Barley at "Evolution Canyonâ€, Mount Carmel, Israel. Heat Shock Proteins, 2016, , 79-102.	0.2	2
104	Genetic Incorporation of the Favorable Alleles for Three Genes Associated With Spikelet Development in Wheat. Frontiers in Plant Science, 2022, 13, 892642.	3.6	2
105	New PCR based markers allowed to identify Secale chromatin in wheat-Secale africanum introgression lines. Frontiers in Biology, 2010, 5, 187-192.	0.7	1
106	Development and utilization of new sequenced characterized amplified region markers specific for E genome of Thinopyrum. Frontiers in Biology, 2013, 8, 451-459.	0.7	1
107	The Chinese bread wheat cultivar Xiaoyanmai 7 harbours genes encoding a pair of novel high-molecular-weight glutenin subunits inherited from cereal rye. Crop and Pasture Science, 2016, 67, 29.	1.5	1
108	Wheat-Thinopyrum Substitution Lines Imprint Compensation Both From Recipients and Donors. Frontiers in Plant Science, 2022, 13, 837410.	3.6	1

#	Article	IF	CITATIONS
109	Characterization of a Wheat-Dasypyrum breviaristatum Chromosome Addition and Its Derived Progenies Carrying Novel Dasypyrum-Specific Gliadin Genes. Agronomy, 2022, 12, 1673.	3.0	1
110	Molecular Characterization and Evolutionary Analysis of Alpha-gliadin Genes from Eremopyrum bonaepartis (Triticeae). Journal of Agricultural Science, 2010, 2, .	0.2	0
111	Identification, Classification and Phylogenetic Analysis of SET Domain Gene in Barley. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	Ο
112	Characterization, Identification and Evaluation of Wheat-Aegilops sharonensis Chromosome Derivatives. Frontiers in Plant Science, 2021, 12, 708551.	3.6	0
113	Isolation and phylogenetic analysis of novel Î ³ -gliadin genes in genus Dasypyrum. Genetics and Molecular Research, 2013, 12, 783-790.	0.2	0