
Darren P Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9391640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of active B-Raf proto-oncogene in kidney collecting ducts induces cyst formation in normal mice and accelerates cyst growth in mice with polycystic kidney disease. Kidney International, 2022, 102, 1103-1114.	5.2	2
2	Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight, 2021, 6, .	5.0	21
3	Prognostic Value of Fibroblast Growth Factor 23 in Autosomal Dominant Polycystic Kidney Disease. Kidney International Reports, 2021, 6, 953-961.	0.8	9
4	Quinomycin A reduces cyst progression in polycystic kidney disease. FASEB Journal, 2021, 35, e21533.	0.5	6
5	The tyrosine-kinase inhibitor Nintedanib ameliorates autosomal-dominant polycystic kidney disease. Cell Death and Disease, 2021, 12, 947.	6.3	20
6	Overexpression of TGF-β1 induces renal fibrosis and accelerates the decline in kidney function in polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F1135-F1148.	2.7	18
7	Epithelial Vasopressin Type-2 Receptors Regulate Myofibroblasts by a YAP-CCN2–Dependent Mechanism in Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 1697-1710.	6.1	26
8	A high-throughput screening platform for Polycystic Kidney Disease (PKD) drug repurposing utilizing murine and human ADPKD cells. Scientific Reports, 2020, 10, 4203.	3.3	19
9	Extracellular matrix, integrins, and focal adhesion signaling in polycystic kidney disease. Cellular Signalling, 2020, 72, 109646.	3.6	38
10	Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression. JCI Insight, 2020, 5, .	5.0	39
11	The Polycystins and Polycystic Kidney Disease. Physiology in Health and Disease, 2020, , 1149-1186.	0.3	0
12	ADPKD cell proliferation and Clâ ^{**} -dependent fluid secretion. Methods in Cell Biology, 2019, 153, 69-92.	1.1	8
13	In vitro cyst formation of ADPKD cells. Methods in Cell Biology, 2019, 153, 93-111.	1.1	8
14	Polycystin 2 regulates mitochondrial Ca ²⁺ signaling, bioenergetics, and dynamics through mitofusin 2. Science Signaling, 2019, 12, .	3.6	70
15	MCP-1 promotes detrimental cardiac physiology, pulmonary edema, and death in the <i>cpk</i> model of polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2019, 317, F343-F360.	2.7	19
16	Periostin in the Kidney. Advances in Experimental Medicine and Biology, 2019, 1132, 99-112.	1.6	21
17	Generation of primary cells from ADPKD and normal human kidneys. Methods in Cell Biology, 2019, 153, 1-23.	1.1	6
18	Aberrant Regulation of Notch3 Signaling Pathway in Polycystic Kidney Disease. Scientific Reports, 2018, 8, 3340.	3.3	32

DARREN P WALLACE

#	Article	IF	CITATIONS
19	Inhibition of Hedgehog signaling suppresses proliferation and microcyst formation of human Autosomal Dominant Polycystic Kidney Disease cells. Scientific Reports, 2018, 8, 4985.	3.3	35
20	Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 315, F1695-F1707.	2.7	21
21	Human-Specific Abnormal Alternative Splicing of Wild-Type PKD1 Induces Premature Termination of Polycystin-1. Journal of the American Society of Nephrology: JASN, 2018, 29, 2482-2492.	6.1	13
22	Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. American Journal of Physiology - Renal Physiology, 2018, 315, F57-F73.	2.7	4
23	Deficient transient receptor potential vanilloid type 4 function contributes to compromised [Ca ²⁺] homeostasis in human autosomalâ€dominant polycystic kidney disease cells. FASEB Journal, 2018, 32, 4612-4623.	0.5	21
24	microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nature Communications, 2017, 8, 14395.	12.8	147
25	Ouabain promotes partial epithelial to mesenchymal transition (EMT) changes in human autosomal dominant polycystic kidney disease (ADPKD) cells. Experimental Cell Research, 2017, 355, 142-152.	2.6	11
26	Insights into cellular and molecular basis for urinary tract infection in autosomal-dominant polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2017, 313, F1077-F1083.	2.7	6
27	Increased YAP Activation Is Associated With Hepatic Cyst Epithelial Cell Proliferation in ARPKD/CHF. Gene Expression, 2017, 17, 313-326.	1.2	10
28	Autocrine IL-10 activation of the STAT3 pathway is required for pathogenic macrophage differentiation in polycystic kidney disease. DMM Disease Models and Mechanisms, 2016, 9, 1051-61.	2.4	20
29	MicroRNA-21 Aggravates Cyst Growth in a Model of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 2319-2330.	6.1	62
30	Chloride secretion by renal collecting ducts. Current Opinion in Nephrology and Hypertension, 2015, 24, 444-449.	2.0	17
31	Ouabain Regulates CFTR-Mediated Anion Secretion and Na,K-ATPase Transport in ADPKD Cells. Journal of Membrane Biology, 2015, 248, 1145-1157.	2.1	12
32	Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. Journal of Clinical Investigation, 2015, 125, 2399-2412.	8.2	107
33	Tubular Obstruction Leads to Progressive Proximal Tubular Injury and Atubular Glomeruli in Polycystic Kidney Disease. American Journal of Pathology, 2014, 184, 1957-1966.	3.8	39
34	Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney International, 2014, 85, 845-854.	5.2	45
35	Cyclic AMP-mediated cyst expansion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1291-1300.	3.8	123
36	The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrology Dialysis Transplantation, 2011, 26, 3458-3465.	0.7	46

#	Article	IF	CITATIONS
37	Tolvaptan inhibits ERK-dependent cell proliferation, Cl ^{â^'} secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. American Journal of Physiology - Renal Physiology, 2011, 301, F1005-F1013.	2.7	131
38	Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, F944-F951.	2.7	65
39	Periostin induces proliferation of human autosomal dominant polycystic kidney cells through α _V -integrin receptor. American Journal of Physiology - Renal Physiology, 2008, 295, F1463-F1471.	2.7	70
40	Identification of a Forskolin-Like Molecule in Human Renal Cysts. Journal of the American Society of Nephrology: JASN, 2007, 18, 934-943.	6.1	49
41	Calcium Restores a Normal Proliferation Phenotype in Human Polycystic Kidney Disease Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2006, 17, 178-187.	6.1	250
42	Early Embryonic Renal Tubules of Wild-Type and Polycystic Kidney Disease Kidneys Respond to cAMP Stimulation with Cystic Fibrosis Transmembrane Conductance Regulator/Na+,K+,2Clâ^' Co-Transporter–Dependent Cystic Dilation. Journal of the American Society of Nephrology: JASN, 2006, 17, 3424-3437.	6.1	118
43	Adrenergic regulation of salt and fluid secretion in human medullary collecting duct cells. American Journal of Physiology - Renal Physiology, 2004, 287, F639-F648.	2.7	17
44	Calcium Restriction Allows cAMP Activation of the B-Raf/ERK Pathway, Switching Cells to a cAMP-dependent Growth-stimulated Phenotype. Journal of Biological Chemistry, 2004, 279, 40419-40430.	3.4	298
45	Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney International, 2004, 66, 964-973.	5.2	230
46	Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney International, 2003, 63, 1983-1994.	5.2	291
47	Electrolyte and fluid secretion by cultured human inner medullary collecting duct cells. American Journal of Physiology - Renal Physiology, 2002, 283, F1337-F1350.	2.7	33
48	cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney International, 2000, 57, 1460-1471.	5.2	308
49	Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney International, 1996, 50, 1327-1336.	5.2	106