
Wolfgang Mikulits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9389711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunological Aspects of AXL/GASâ€6 in the Context of Human Liver Regeneration. Hepatology Communications, 2022, 6, 576-592.	2.0	5
2	Intrinsic and Extrinsic Control of Hepatocellular Carcinoma by TAM Receptors. Cancers, 2021, 13, 5448.	1.7	5
3	Antifibrotic Effects of Amyloid-Beta and Its Loss in Cirrhotic Liver. Cells, 2020, 9, 452.	1.8	8
4	α2-Adrenergic Receptor in Liver Fibrosis: Implications for the Adrenoblocker Mesedin. Cells, 2020, 9, 456.	1.8	10
5	Transforming Growth Factorâ€Î² and Axl Induce CXCL5 and Neutrophil Recruitment in Hepatocellular Carcinoma. Hepatology, 2019, 69, 222-236.	3.6	85
6	The Hepatic Microenvironment and TRAIL-R2 Impact Outgrowth of Liver Metastases in Pancreatic Cancer after Surgical Resection. Cancers, 2019, 11, 745.	1.7	12
7	c-Met Signaling Is Essential for Mouse Adult Liver Progenitor Cells Expansion After Transforming Growth Factor-I2-Induced Epithelial–Mesenchymal Transition and Regulates Cell Phenotypic Switch. Stem Cells, 2019, 37, 1108-1118.	1.4	19
8	LXRα limits TGFβ-dependent hepatocellular carcinoma associated fibroblast differentiation. Oncogenesis, 2019, 8, 36.	2.1	33
9	Loss of SR-BI Down-Regulates MITF and Suppresses Extracellular Vesicle Release in Human Melanoma. International Journal of Molecular Sciences, 2019, 20, 1063.	1.8	11
10	Metastasis of pancreatic cancer: An uninflamed liver micromilieu controls cell growth and cancer stem cell properties by oxidative phosphorylation in pancreatic ductal epithelial cells. Cancer Letters, 2019, 453, 95-106.	3.2	26
11	Snail mediates crosstalk between TGFβ and LXRα in hepatocellular carcinoma. Cell Death and Differentiation, 2018, 25, 885-903.	5.0	34
12	Dynamics of CRISPR/Cas9-mediated genomic editing of the AXL locus in hepatocellular carcinoma cells. Oncology Letters, 2018, 15, 2441-2450.	0.8	6
13	Use of HuH6 and other human-derived hepatoma lines for the detection of genotoxins: a new hope for laboratory animals?. Archives of Toxicology, 2018, 92, 921-934.	1.9	31
14	Malignant Phenotypes in Metastatic Melanoma are Governed by SR-BI and its Association with Glycosylation and STAT5 Activation. Molecular Cancer Research, 2018, 16, 135-146.	1.5	21
15	The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma. Oncolmmunology, 2018, 7, e1368603.	2.1	33
16	Dynamics of Axl Receptor Shedding in Hepatocellular Carcinoma and Its Implication for Theranostics. International Journal of Molecular Sciences, 2018, 19, 4111.	1.8	19
17	Liver metastasis of pancreatic cancer: the hepatic microenvironment impacts differentiation and self-renewal capacity of pancreatic ductal epithelial cells. Oncotarget, 2018, 9, 31771-31786.	0.8	19
18	Transforming growth factor-Î ² -induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma. Cancer Letters, 2017, 392, 39-50.	3.2	69

WOLFGANG MIKULITS

#	Article	IF	CITATIONS
19	Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis. Modern Pathology, 2017, 30, 26-38.	2.9	65
20	Transforming Growth Factor-β Drives the Transendothelial Migration of Hepatocellular Carcinoma Cells. International Journal of Molecular Sciences, 2017, 18, 2119.	1.8	17
21	The non-invasive serum biomarker soluble Axl accurately detects advanced liver fibrosis and cirrhosis. Cell Death and Disease, 2017, 8, e3135-e3135.	2.7	34
22	Soluble Axl is an accurate biomarker of cirrhosis and hepatocellular carcinoma development: results from a large scale multicenter analysis. Oncotarget, 2017, 8, 46234-46248.	0.8	49
23	Hepatic Deletion of Janus Kinase 2 Counteracts Oxidative Stress in Mice. Scientific Reports, 2016, 6, 34719.	1.6	24
24	Role of epithelial to mesenchymal transition in hepatocellular carcinoma. Journal of Hepatology, 2016, 65, 798-808.	1.8	457
25	Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. Journal of Hepatology, 2016, 64, 609-617.	1.8	102
26	Accurate Determination of Soluble Axl by Enzyme-Linked Immunosorbent Assay. Assay and Drug Development Technologies, 2016, 14, 543-550.	0.6	12
27	Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: An update for clinicians (Review). Oncology Reports, 2016, 36, 613-625.	1.2	58
28	The rationale for targeting <scp>TGF</scp> â€Î² in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	1.7	60
29	Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1α: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma. Oncotarget, 2016, 7, 27108-27121.	0.8	45
30	Neuropilin-2 induced by transforming growth factor-Î ² augments migration of hepatocellular carcinoma cells. BMC Cancer, 2015, 15, 909.	1.1	30
31	Axl activates autocrine transforming growth factorâ€Î² signaling in hepatocellular carcinoma. Hepatology, 2015, 61, 930-941.	3.6	127
32	Multicenter analysis of soluble <scp>A</scp> xl reveals diagnostic value for very early stage hepatocellular carcinoma. International Journal of Cancer, 2015, 137, 385-394.	2.3	41
33	STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nature Communications, 2015, 6, 7736.	5.8	136
34	Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE, 2015, 10, e0142134.	1.1	13
35	STAT3 in hepatocellular carcinoma: new perspectives. Hepatic Oncology, 2014, 1, 107-120.	4.2	44
36	In vitro characterisation of the anti-intravasative properties of the marine product heteronemin. Archives of Toxicology, 2013, 87, 1851-1861.	1.9	26

3

WOLFGANG MIKULITS

#	Article	IF	CITATIONS
37	Novel Inhibitors of Cyclin-Dependent Kinases Combat Hepatocellular Carcinoma without Inducing Chemoresistance. Molecular Cancer Therapeutics, 2013, 12, 1947-1957.	1.9	28
38	La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition. Nucleic Acids Research, 2012, 40, 290-302.	6.5	1,496
39	PDGF enhances IRES-mediated translation of Laminin B1 by cytoplasmic accumulation of La during epithelial to mesenchymal transition. Nucleic Acids Research, 2012, 40, 9738-9749.	6.5	49
40	TGF-β in Epithelial to Mesenchymal Transition and Metastasis of Liver Carcinoma. Current Pharmaceutical Design, 2012, 18, 4135-4147.	0.9	95
41	Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression. PLoS ONE, 2012, 7, e51136.	1.1	144
42	Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans. EMBO Journal, 2011, 30, 1671-1671.	3.5	1
43	Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutation Research - Reviews in Mutation Research, 2011, 728, 23-34.	2.4	642
44	p19ARF/p14ARF controls oncogenic functions of signal transducer and activator of transcription 3 in hepatocellular carcinoma. Hepatology, 2011, 54, 164-172.	3.6	47
45	A Human Model of Epithelial to Mesenchymal Transition to Monitor Drug Efficacy in Hepatocellular Carcinoma Progression. Molecular Cancer Therapeutics, 2011, 10, 850-860.	1.9	63
46	Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. Journal of Clinical Investigation, 2011, 121, 2000-2012.	3.9	163
47	The Crosstalk of RAS with the TGF-β Family During Carcinoma Progression and its Implications for Targeted Cancer Therapy. Current Cancer Drug Targets, 2010, 10, 849-857.	0.8	48
48	Signal Transducer and Activator of Transcription 3 Protects From Liver Injury and Fibrosis in a Mouse Model of Sclerosing Cholangitis. Gastroenterology, 2010, 138, 2499-2508.	0.6	71
49	Nuclear β-Catenin Induces an Early Liver Progenitor Phenotype in Hepatocellular Carcinoma and Promotes Tumor Recurrence. American Journal of Pathology, 2010, 176, 472-481.	1.9	97
50	Epithelial–mesenchymal transition in hepatocellular carcinoma. Future Oncology, 2009, 5, 1169-1179.	1.1	287
51	Use of four new human-derived liver-cell lines for the detection of genotoxic compounds in the single-cell gel electrophoresis (SCGE) assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 657, 133-139.	0.9	25
52	Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. British Journal of Nutrition, 2008, 99, ES3-ES52.	1.2	101
53	The leader region of Laminin B1 mRNA confers cap-independent translation. Nucleic Acids Research, 2007, 35, 2473-2482.	6.5	27
54	TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comparative Hepatology, 2007, 6, 1.	0.9	57

WOLFGANG MIKULITS

#	Article	IF	CITATIONS
55	The plasticity of p19ARF null hepatic stellate cells and the dynamics of activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 76-87.	1.9	25
56	Integration of Ras subeffector signaling in TGF- \hat{l}^2 mediated late stage hepatocarcinogenesis. Carcinogenesis, 2005, 26, 931-942.	1.3	47
57	Models of epithelial–mesenchymal transition. Drug Discovery Today: Disease Models, 2005, 2, 57-63.	1.2	32
58	β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene, 2004, 23, 2672-2680.	2.6	147
59	Immortalized p19ARF null hepatocytes restore liver injury and generate hepatic progenitors after transplantation. Hepatology, 2004, 39, 628-634.	3.6	38
60	Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutation Research - Reviews in Mutation Research, 2004, 566, 9-20.	2.4	272
61	The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis. Oncogene, 2003, 22, 6725-6738.	2.6	68
62	Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. Journal of Cell Science, 2002, 115, 1189-1202.	1.2	177
63	Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness. Journal of Cell Science, 2002, 115, 1189-202.	1.2	153