
## Laurent Maveyraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9388785/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fragment-Based Ligand Discovery Applied to the Mycolic Acid Methyltransferase Hma (MmaA4) from<br>Mycobacterium tuberculosis: A Crystallographic and Molecular Modelling Study. Pharmaceuticals,<br>2021, 14, 1282.                                    | 3.8  | 2         |
| 2  | Molecular Basis for Extender Unit Specificity of Mycobacterial Polyketide Synthases. ACS Chemical<br>Biology, 2020, 15, 3206-3216.                                                                                                                     | 3.4  | 2         |
| 3  | Protein X-ray Crystallography and Drug Discovery. Molecules, 2020, 25, 1030.                                                                                                                                                                           | 3.8  | 115       |
| 4  | Occurrence and stability of hetero-hexamer associations formed by Î <sup>2</sup> -carboxysome CcmK shell components. PLoS ONE, 2019, 14, e0223877.                                                                                                     | 2.5  | 20        |
| 5  | Structural insights into chaperone addiction of toxin-antitoxin systems. Nature Communications, 2019, 10, 782.                                                                                                                                         | 12.8 | 15        |
| 6  | Title is missing!. , 2019, 14, e0223877.                                                                                                                                                                                                               |      | 0         |
| 7  | Title is missing!. , 2019, 14, e0223877.                                                                                                                                                                                                               |      | 0         |
| 8  | Title is missing!. , 2019, 14, e0223877.                                                                                                                                                                                                               |      | 0         |
| 9  | Title is missing!. , 2019, 14, e0223877.                                                                                                                                                                                                               |      | 0         |
| 10 | An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors. European Journal of Medicinal Chemistry, 2018, 146, 318-343.                                                                          | 5.5  | 43        |
| 11 | Molecular Dynamics as a Tool for Virtual Ligand Screening. Methods in Molecular Biology, 2018, 1762, 145-178.                                                                                                                                          | 0.9  | 16        |
| 12 | Insights into Substrate Modification by Dehydratases from Type I Polyketide Synthases. Journal of<br>Molecular Biology, 2017, 429, 1554-1569.                                                                                                          | 4.2  | 24        |
| 13 | Strategies for Tackling Drug Resistance in Tuberculosis. , 2017, , 89-112.                                                                                                                                                                             |      | 1         |
| 14 | The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization. Journal of Structural Biology, 2016, 194, 337-346.                                                                 | 2.8  | 10        |
| 15 | Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32)<br>Orthologs from Mycobacteria. Journal of Biological Chemistry, 2016, 291, 7973-7989.                                                              | 3.4  | 22        |
| 16 | Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form<br>and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. Journal of<br>Structural Biology, 2015, 190, 328-337. | 2.8  | 31        |
| 17 | Crystallographic studies of the structured core domain of Knr4 from <i>Saccharomyces<br/>cerevisiae</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71,<br>1120-1124.                                                 | 0.8  | 2         |
| 18 | Residues Essential for Panton-Valentine Leukocidin S Component Binding to Its Cell Receptor Suggest<br>Both Plasticity and Adaptability in Its Interaction Surface. PLoS ONE, 2014, 9, e92094.                                                         | 2.5  | 20        |

## LAURENT MAVEYRAUD

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Crystallization and preliminary crystallographic studies of both components of the staphylococcal<br>LukE–LukD leukotoxin. Acta Crystallographica Section F: Structural Biology Communications, 2012,<br>68, 663-667.                    | 0.7  | 5         |
| 20 | Structural reorganization of the antigen-binding groove of human CD1b for presentation of<br>mycobacterial sulfoglycolipids. Proceedings of the National Academy of Sciences of the United States<br>of America, 2011, 108, 17755-17760. | 7.1  | 52        |
| 21 | Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes. Proceedings of the United States of America, 2011, 108, 13230-13235.                                                                               | 7.1  | 47        |
| 22 | Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNAâ€II from<br><i>Sambucus nigra</i> . Proteins: Structure, Function and Bioinformatics, 2009, 75, 89-103.                                    | 2.6  | 33        |
| 23 | A covalent Sâ€F heterodimer of leucotoxin reveals molecular plasticity of βâ€barrel poreâ€forming toxins.<br>Proteins: Structure, Function and Bioinformatics, 2008, 71, 485-496.                                                        | 2.6  | 28        |
| 24 | Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b.<br>EMBO Journal, 2006, 25, 3684-3692.                                                                                                | 7.8  | 75        |
| 25 | Antibacterials as wonder drugs and how their effectiveness is being compromised.<br>Pharmacochemistry Library, 2002, 32, 193-205.                                                                                                        | 0.1  | 0         |
| 26 | High-Resolution X-ray Structure of an Acyl-Enzyme Species for the Class D OXA-10 β-Lactamase. Journal of the American Chemical Society, 2002, 124, 2461-2465.                                                                            | 13.7 | 73        |
| 27 | Molecular Dynamics at the Root of Expansion of Function in the M69L Inhibitor-Resistant TEM<br>β-Lactamase fromEscherichiacoli. Journal of the American Chemical Society, 2002, 124, 9422-9430.                                          | 13.7 | 54        |
| 28 | Critical involvement of a carbamylated lysine in catalytic function of class D Â-lactamases. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14280-14285.                                     | 7.1  | 213       |
| 29 | 6-(Hydroxyalkyl)penicillanates as Probes for Mechanisms of .BETALactamases Journal of Antibiotics, 2000, 53, 1022-1027.                                                                                                                  | 2.0  | 19        |
| 30 | Insights into Class D $\hat{1}^2$ -Lactamases Are Revealed by the Crystal Structure of the OXA10 Enzyme from Pseudomonas aeruginosa. Structure, 2000, 8, 1289-1298.                                                                      | 3.3  | 135       |
| 31 | The High Resolution Crystal Structure for Class A β-Lactamase PER-1 Reveals the Bases for Its Increase in Breadth of Activity. Journal of Biological Chemistry, 2000, 275, 28075-28082.                                                  | 3.4  | 60        |
| 32 | The First Structural and Mechanistic Insights for Class D β-Lactamases: Evidence for a Novel Catalytic<br>Process for Turnover of β-Lactam Antibiotics. Journal of the American Chemical Society, 2000, 122,<br>6132-6133.               | 13.7 | 51        |
| 33 | Elucidation of Mechanism of Inhibition and X-ray Structure of the TEM-1 β-Lactamase from Escherichia<br>coli Inhibited by a N-Sulfonyloxy-β-lactam. Journal of the American Chemical Society, 1999, 121, 5353-5359.                      | 13.7 | 29        |
| 34 | The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure, 1999, 7, 277-287.                                     | 3.3  | 200       |
| 35 | X-ray Structure of the Asn276Asp Variant of theEscherichia coliTEM-1 β-Lactamase: Direct Observation<br>of Electrostatic Modulation in Resistance to Inactivation by Clavulanic Acidâ€,‡. Biochemistry, 1999, 38,<br>9570-9576.          | 2.5  | 69        |
| 36 | Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features.<br>Journal of Molecular Biology, 1999, 294, 1287-1297.                                                                             | 4.2  | 107       |

LAURENT MAVEYRAUD

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Porin mutants with new channel properties. Protein Science, 1998, 7, 1603-1611.                                                                                                                                                                                              | 7.6  | 47        |
| 38 | Crystal Structure of an Acylation Transition-State Analog of the TEM-1 β-Lactamase. Mechanistic<br>Implications for Class A β-Lactamasesâ€. Biochemistry, 1998, 37, 2622-2628.                                                                                               | 2.5  | 86        |
| 39 | Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge by the<br>Common Class A β-Lactamases from the Antibiotic-Resistant Bacteria. Journal of the American Chemical<br>Society, 1998, 120, 9748-9752.                                  | 13.7 | 138       |
| 40 | X-ray Analysis of the NMC-A β-Lactamase at 1.64-à Resolution, a Class A Carbapenemase with Broad<br>Substrate Specificity. Journal of Biological Chemistry, 1998, 273, 26714-26721.                                                                                          | 3.4  | 79        |
| 41 | Crystal Structure of 6α-(Hydroxymethyl)penicillanate Complexed to the TEM-1 β-Lactamase fromEscherichia coli: Evidence on the Mechanism of Action of a Novel Inhibitor Designed by a Computer-Aided Process. Journal of the American Chemical Society, 1996, 118, 7435-7440. | 13.7 | 120       |
| 42 | Structural Basis of Extended Spectrum TEM β-Lactamases. Journal of Biological Chemistry, 1996, 271,<br>10482-10489.                                                                                                                                                          | 3.4  | 32        |
| 43 | Electrostatic analysis of TEM1 $\hat{l}^2$ -lactamase: effect of substrate binding, steep potential gradients and consequences of site-directed mutations. Structure, 1995, 3, 603-613.                                                                                      | 3.3  | 60        |
| 44 | Mass Spectral Kinetic Study of Acylation and Deacylation During the Hydrolysis of Penicillins and<br>Cefotaxime by .betaLactamase TEM-1 and the G238S Mutant. Biochemistry, 1995, 34, 11660-11667.                                                                           | 2.5  | 54        |
| 45 | Site-directed mutagenesis of beta-lactamase TEM-1. Investigating the potential role of specific residues on the activity of Pseudomonas-specific enzymes. FEBS Journal, 1993, 217, 939-946.                                                                                  | 0.2  | 26        |