Osvaldo Giorgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9388778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroplastic changes in <scp>câ€Fos</scp> , <scp>ΔFosB</scp> , <scp>BDNF</scp> , <scp>trkB</scp> , and Arc expression in the hippocampus of male Roman rats: differential effects of sexual activity. Hippocampus, 2022, 32, 529-551.	1.9	3
2	Decreased social interaction in the RHA rat model of schizophrenia-relevant features: Modulation by neonatal handling. Behavioural Processes, 2021, 188, 104397.	1.1	13
3	Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neuroscience and Biobehavioral Reviews, 2021, 131, 597-617.	6.1	18
4	A Genetic Model of Impulsivity, Vulnerability to Drug Abuse and Schizophrenia-Relevant Symptoms With Translational Potential: The Roman High- vs. Low-Avoidance Rats. Frontiers in Behavioral Neuroscience, 2019, 13, 145.	2.0	40
5	c-Fos, ΔFosB, BDNF, trkB and Arc Expression in the Limbic System of Male Roman High- and Low-Avoidance Rats that Show Differences in Sexual Behavior: Effect of Sexual Activity. Neuroscience, 2019, 396, 1-23.	2.3	14
6	Active avoidance learning differentially activates ERK phosphorylation in the primary auditory and visual cortices of Roman high- and low-avoidance rats. Physiology and Behavior, 2019, 201, 31-41.	2.1	3
7	The Roman high- and low-avoidance rats differ in the sensitivity to shock-induced suppression of drinking and to the anxiogenic effect of pentylenetetrazole. Pharmacology Biochemistry and Behavior, 2018, 167, 29-35.	2.9	8
8	Effects of morphine on place conditioning and ERK1/2 phosphorylation in the nucleus accumbens of psychogenetically selected Roman low- and high-avoidance rats. Psychopharmacology, 2018, 235, 59-69.	3.1	9
9	Effect of Acute Stress on the Expression of BDNF, trkB, and PSA-NCAM in the Hippocampus of the Roman Rats: A Genetic Model of Vulnerability/Resistance to Stress-Induced Depression. International Journal of Molecular Sciences, 2018, 19, 3745.	4.1	21
10	Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats. Psychopharmacology, 2017, 234, 957-975.	3.1	16
11	Expression of <scp>BDNF</scp> and trkB in the hippocampus of a rat genetic model of vulnerability (Roman lowâ€avoidance) and resistance (Roman highâ€avoidance) to stressâ€induced depression. Brain and Behavior, 2017, 7, e00861.	2.2	31
12	Dopamine, Noradrenaline and Differences in Sexual Behavior between Roman High and Low Avoidance Male Rats: A Microdialysis Study in the Medial Prefrontal Cortex. Frontiers in Behavioral Neuroscience, 2017, 11, 108.	2.0	30
13	Effects of Forced Swimming Stress on ERK and Histone H3 Phosphorylation in Limbic Areas of Roman High- and Low-Avoidance Rats. PLoS ONE, 2017, 12, e0170093.	2.5	12
14	Differential effects of cocaine on extracellular signalâ€regulated kinase phosphorylation in nuclei of the extended amygdala and prefrontal cortex of psychogenetically selected roman high―and lowâ€avoidance rats. Journal of Neuroscience Research, 2015, 93, 714-721.	2.9	9
15	Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia. Frontiers in Behavioral Neuroscience, 2015, 9, 213.	2.0	44
16	Involvement of dopamine in the differences in sexual behaviour between Roman high and low avoidance rats: An intracerebral microdialysis study. Behavioural Brain Research, 2015, 281, 177-186.	2.2	27
17	Effects of chronic antidepressant treatments in a putative genetic model of vulnerability (Roman) Tj ETQq1 1 0.7 Psychopharmacology, 2014, 231, 43-53.	'84314 rgl 3.1	BT /Overloc 29
18	P.1.h.031 Dopamine is involved in the different copulatory patterns of Roman high and low avoidance rats: studies with apomorphine and haloperidol. European Neuropsychopharmacology, 2014, 24, S287-S288.	0.7	0

Osvaldo Giorgi

#	Article	IF	CITATIONS
19	Dopamine is involved in the different patterns of copulatory behaviour of Roman high and low avoidance rats: Studies with apomorphine and haloperidol. Pharmacology Biochemistry and Behavior, 2014, 124, 211-219.	2.9	22
20	Male Roman high and low avoidance rats show different patterns of copulatory behaviour: Comparison with Sprague Dawley rats. Physiology and Behavior, 2014, 127, 27-36.	2.1	24
21	Differential Effects of Voluntary Ethanol Consumption on Dopamine Output in the Nucleus Accumbens Shell of Roman High- and Low-Avoidance Rats: A Behavioral and Brain Microdialysis Study. World Journal of Neuroscience, 2014, 04, 279-292.	0.1	20
22	Dopamine agonist-induced penile erection and yawning: A comparative study in outbred Roman high- and low-avoidance rats. Pharmacology Biochemistry and Behavior, 2013, 109, 59-66.	2.9	22
23	Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Psychopharmacology, 2010, 211, 403-414.	3.1	46
24	The Roman High- and Low-Avoidance Rat Lines Differ in the Acquisition, Maintenance, Extinction, and Reinstatement of Intravenous Cocaine Self-Administration. Neuropsychopharmacology, 2009, 34, 1091-1101.	5.4	85
25	Some Guidelines for Defining Personality Differences in Rats. , 2009, , 281-300.		16
26	The psychogenetically selected Roman high- and low-avoidance rat lines: A model to study the individual vulnerability to drug addiction. Neuroscience and Biobehavioral Reviews, 2007, 31, 148-163.	6.1	122
27	Neonatal Ventral Hippocampal Lesions Potentiate Amphetamine-Induced Increments in Dopamine Efflux in the Core, but Not the Shell, of the Nucleus Accumbens. Biological Psychiatry, 2006, 60, 1188-1195.	1.3	16
28	Behavioural effects of acute and repeated cocaine treatments: a comparative study in sensitisation-prone RHA rats and their sensitisation-resistant RLA counterparts. Psychopharmacology, 2005, 180, 530-538.	3.1	27
29	The psychogenetically selected Roman rat lines differ in the susceptibility to develop amphetamine sensitization. Behavioural Brain Research, 2005, 157, 147-156.	2.2	47
30	Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: A comparative study in the Roman high- and low-avoidance rat lines. Neuroscience, 2005, 135, 987-998.	2.3	54
31	Differential neurochemical properties of central serotonergic transmission in Roman high- and low-avoidance rats. Journal of Neurochemistry, 2004, 86, 422-431.	3.9	41
32	A differential activation of dopamine output in the shell and core of the nucleus accumbens is associated with the motor responses to addictive drugs: a brain dialysis study in Roman high- and low-avoidance rats. Neuropharmacology, 2004, 46, 688-699.	4.1	77
33	Dissociation between mesocortical dopamine release and fear-related behaviours in two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. European Journal of Neuroscience, 2003, 17, 2716-2726.	2.6	96
34	Repeated morphine injections induce behavioural sensitization in Roman high- but not in Roman low-avoidance rats. NeuroReport, 2003, 14, 2433-2438.	1.2	25
35	Kinetics of tert-[35S]Butylbicyclophosphorothionate Binding in the Cerebral Cortex of Newborn and Adult Rats: Effects of GABA and Receptor Desensitization. Journal of Neurochemistry, 2002, 67, 423-429.	3.9	2
36	6,3′-Dibromoflavone and 6-Nitro-3′-bromoflavone: New Additions to the 6,3′-Disubstituted Flavone Famil of High-Affinity Ligands of the Brain Benzodiazepine Binding Site with Agonistic Properties. Biochemical and Biophysical Research Communications, 2000, 273, 694-698.	y 2.1	14

OSVALDO GIORGI

#	Article	IF	CITATIONS
37	5-HT1A receptor mRNA expressions differ in the embryonic spinal cord of male and female rats. Neuroscience Letters, 1997, 237, 41-44.	2.1	10
38	Effects of cocaine and morphine in rats from two psychogenetically selected lines: a behavioral and brain dialysis study. Behavior Genetics, 1997, 27, 537-546.	2.1	52
39	Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behavior Genetics, 1997, 27, 527-536.	2.1	53
40	Anticonvulsant effect of felbamate in the pentylenetetrazole kindling model of epilepsy in the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 173-8.	3.0	15
41	Modulation of [35S]TBPS binding by ligands with preferential affinity for benzodiazepine BZ1 sites in the cerebral cortex of newborn and adult rats. European Journal of Pharmacology, 1995, 290, 37-47.	2.6	6
42	Behavior of the Roman/Verh high- and low-avoidance rat lines in anxiety tests: relationship with defecation and self-grooming. Physiology and Behavior, 1995, 58, 1209-1213.	2.1	101
43	Allosteric modulation of [35S]TBPS-binding in the cerebral cortex of the rat during postnatal development. Developmental Brain Research, 1994, 80, 73-80.	1.7	9
44	GABAergic and dopaminergic transmission in the brain of Roman high-avoidance and Roman low-avoidance rats. Brain Research, 1994, 638, 133-138.	2.2	57
45	Developmental changes in the content of dopamine in the olfactory bulb of the European eel (Anguilla anguilla). Neuroscience Letters, 1994, 172, 35-38.	2.1	10
46	Chronic treatment with SCH 23390 increases the production rate of dopamine D1 receptors in the nigro-striatal system of the rat. European Journal of Pharmacology, 1993, 245, 139-145.	2.6	13
47	Modulation of 35S-TBPS binding by GABAergic drugs in the cerebral cortex of newborn and adult rats. Brain Research Bulletin, 1993, 32, 647-652.	3.0	9
48	Differential turnover rates of D1 dopamine receptors in the brain and retina of adult and senescent rats. Neurochemistry International, 1992, 20, 171-173.	3.8	3
49	Age-related changes in the turnover rates of D1-dopamine receptors in the retina and in distinct areas of the rat brain. Brain Research, 1992, 569, 323-329.	2.2	20
50	Age-related decrease in the density of benzodiazepine recognition sites in the brain of the fresh water eel (Anguilla anguilla). Neuroscience Letters, 1991, 133, 168-170.	2.1	3
51	Mk-801 prevents the decrease in 35S-TBPS binding in the rat cerebral cortex induced by pentylenetetrazol kindling. Brain Research Bulletin, 1991, 27, 835-837.	3.0	18
52	MK-801 prevents chemical kindling induced by pentylenetetrazol in rats. European Journal of Pharmacology, 1991, 193, 363-365.	3.5	62
53	The neutral endopeptidase-24.11 (enkephalinase) inhibitor, SCH 32615, increases dopamine metabolism in the nucleus accumbens of the rat. European Journal of Pharmacology, 1991, 196, 137-142.	3.5	11
54	Pentylenetetrazol-induced kindling in rats: Effect of GABA function inhibitors. Pharmacology Biochemistry and Behavior, 1991, 40, 329-333.	2.9	95

OSVALDO GIORGI

#	Article	IF	CITATIONS
55	Differential Turnover Rates of D1Dopamine Receptors in the Retina and in Distinct Areas of the Rat Brain. Journal of Neurochemistry, 1991, 57, 754-759.	3.9	8
56	Unilateral inactivation of dopamine receptors after intrastriatal injection of N-ethoxy-carbonyl-2- ethoxy-1,2-dihydroquinoline (EEDQ): A novel rotational model to investigate dopamine receptor interactions. Pharmacology Biochemistry and Behavior, 1990, 35, 877-884.	2.9	22
57	Differential effect of aging on3H-SCH 23390 binding sites in the retina and in distinct areas of the rat brain. Journal of Neural Transmission, 1990, 82, 157-166.	2.8	7
58	Selective unilateral inactivation of striatal D1 and D2 dopamine receptor subtypes by EEDQ: turning behavior elicited by D2 dopamine receptor agonists. Brain Research, 1990, 533, 53-59.	2.2	18
59	Gabaergic and dopaminergic transmission in the rat cerebral cortex: Effect of stress, anxiolytic and anxiogenic drugs. , 1990, 48, 121-142.		169
60	The β-carboline derivatives ZK 93426 and FG 7142 fail to precipitate abstinence signs in diazepam-dependent cats. Pharmacology Biochemistry and Behavior, 1989, 32, 671-675.	2.9	9
61	Binding sites for [3H]2-OXO-quazepam in the brain of the cat: Evidence for heterogeneity of benzodiazepine recognition sites. Neuropharmacology, 1989, 28, 715-718.	4.1	9
62	Functional coupling of GABAA receptors and benzodiazepine recognition site subtypes in the spinal cord of the rat. European Journal of Pharmacology, 1989, 169, 205-213.	3.5	19
63	Ro 15-4513, a partial inverse agonist for benzodiazepine recognition sites, has proconflict and proconvulsant effects in the rat. European Journal of Pharmacology, 1989, 159, 233-239.	3.5	35
64	The benzodiazepine recognition site inverse agonists Ro 15-4513 and FG 7142 both antagonize the EEG effects of ethanol in the rat. Life Sciences, 1988, 43, 2151-2158.	4.3	6
65	Preferential affinity of 3H-2-oxo-quazepam for type I benzodiazepine recognition sites in the human brain. Life Sciences, 1988, 42, 189-197.	4.3	29
66	Decreased sensitivity to diazepam induced by chronic administration of FG 7142. Neuroscience Letters, 1988, 86, 219-224.	2.1	8
67	Characterization of 3H-2-oxo-quazepam binding in the human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1988, 12, 701-712.	4.8	3
68	The abstinence syndrome in diazepam-dependent cats is precipitated by Ro 15-1788 and Ro 15-4513 but not by the benzodiazepine receptor antagonist ZK 93426. Neuroscience Letters, 1988, 88, 206-210.	2.1	10
69	Developmental and age-related changes in D1-dopamine receptors and dopamine content in the rat striatum. Developmental Brain Research, 1987, 35, 283-290.	1.7	166
70	The anxiolytic β-carboline ZK 93423 prevents the stress-induced increase in dopamine turnover in the prefrontal cortex. European Journal of Pharmacology, 1987, 134, 327-331.	3.5	20
71	The β-carboline ZK 93423 inhibits reticulata neurons: An effect reversed by benzodiazepine antagonists. Life Sciences, 1987, 40, 1423-1430.	4.3	10
72	6-Hydroxydopamine-induced degeneration of nigral dopamine neurons: Differential effect on nigral and striatal D-1 dopamine receptors. Life Sciences, 1987, 41, 697-706.	4.3	66

OSVALDO GIORGI

#	Article	IF	CITATIONS
73	D-1 dopamine receptors labelled with 3H-SCH 23390: Decrease in the striatum of aged rats. Neurobiology of Aging, 1987, 8, 51-54.	3.1	56
74	3H-SCH 23390 binding sites in the rat substantia nigra: Evidence for a presynaptic localization and innervation by dopamine. Life Sciences, 1986, 39, 321-328.	4.3	86
75	Sulfation of peptides and simple phenols by rat brain phenolsulfotransferase. Biochemical Pharmacology, 1985, 34, 45-49.	4.4	20
76	?-Aminobutyric Acid Turnover in Rat Striatum: Effects of Glutamate and Kainic Acid. Journal of Neurochemistry, 1984, 42, 215-220.	3.9	25
77	Dorsal root ganglia and nerve growth factor: A model for understanding the mechanism of GM1effects on neuronal repair. Journal of Neuroscience Research, 1984, 12, 277-287.	2.9	78
78	A reduction of the tone of 5-hydroxytryptamine neurons decreases utilization rates of striatal and hypothalamic enkephalins. European Journal of Pharmacology, 1984, 106, 427-430.	3.5	38
79	Cholecystokinin turnover in brain. Brain Research, 1983, 276, 375-378.	2.2	23
80	Systemic and in vitro effects of GAD and GABA-T inhibitors on AADC activity and of AADC inhibitors on GAD. General Pharmacology, 1981, 12, 217-223.	0.7	1
81	Decreased 3H-l-quinuclidinyl benzilate binding and muscarine receptor subsensitivity after chronic gamma-butyrolactone treatment. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 318, 14-18.	3.0	12
82	Physiological significance of α-adrenoceptor-mediated negative feedback mechanism regulating noradrenaline release during nerve stimulation. Nature, 1977, 265, 648-650.	27.8	92