
Madeleine J H Van Oppen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9387014/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell surface carbohydrates of symbiotic dinoflagellates and their role in the establishment of cnidarian–dinoflagellate symbiosis. ISME Journal, 2022, 16, 190-199.	9.8	12
2	A role for bacterial experimental evolution in coral bleaching mitigation?. Trends in Microbiology, 2022, 30, 217-228.	7.7	31
3	Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model. Access Microbiology, 2022, 4, 000314.	0.5	4
4	Temperatureâ€mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warming. Global Change Biology, 2022, 28, 2006-2025.	9.5	12
5	Horizon scan of rapidly advancing coral restoration approaches for 21st century reef management. Emerging Topics in Life Sciences, 2022, 6, 125-136.	2.6	16
6	Exploring microbiome engineering as a strategy for improved thermal tolerance in <i>Exaiptasia diaphana</i> . Journal of Applied Microbiology, 2022, 132, 2940-2956.	3.1	14
7	Evidence for de novo acquisition of microalgal symbionts by bleached adult corals. ISME Journal, 2022, 16, 1676-1679.	9.8	16
8	Colonization and metabolite profiles of homologous, heterologous and experimentally evolved algal symbionts in the sea anemone <i>Exaiptasia diaphana</i> . ISME Communications, 2022, 2, .	4.2	4
9	Predictive models for the selection of thermally tolerant corals based on offspring survival. Nature Communications, 2022, 13, 1543.	12.8	20
10	Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integrative and Comparative Biology, 2022, 62, 1700-1709.	2.0	11
11	Lack of evidence for the oxidative stress theory of bleaching in the sea anemone, Exaiptasia diaphana, under elevated temperature. Coral Reefs, 2022, 41, 1161-1172.	2.2	14
12	Long-Term Heat Selection of the Coral Endosymbiont Cladocopium C1acro (Symbiodiniaceae) Stabilizes Associated Bacterial Communities. International Journal of Molecular Sciences, 2022, 23, 4913.	4.1	15
13	Maternal effects in gene expression of interspecific coral hybrids. Molecular Ecology, 2021, 30, 517-527.	3.9	7
14	Short-Term Exposure to Sterile Seawater Reduces Bacterial Community Diversity in the Sea Anemone, Exaiptasia diaphana. Frontiers in Marine Science, 2021, 7, .	2.5	11
15	Intracellular bacteria are common and taxonomically diverse in cultured and <i>in hospite</i> algal endosymbionts of coral reefs. ISME Journal, 2021, 15, 2028-2042.	9.8	61
16	Adaptive responses of freeâ€living and symbiotic microalgae to simulated future ocean conditions. Global Change Biology, 2021, 27, 1737-1754.	9.5	15
17	Variability in Fitness Trade-Offs Amongst Coral Juveniles With Mixed Genetic Backgrounds Held in the Wild. Frontiers in Marine Science, 2021, 8, .	2.5	15
18	Microbiome characterization of defensive tissues in the model anemone Exaiptasia diaphana. BMC Microbiology, 2021, 21, 152.	3.3	14

#	Article	IF	CITATIONS
19	Physiological diversity among sympatric, conspecific endosymbionts of coral (Cladocopium C1acro) from the Great Barrier Reef. Coral Reefs, 2021, 40, 985-997.	2.2	11
20	Morphological stasis masks ecologically divergent coral species on tropical reefs. Current Biology, 2021, 31, 2286-2298.e8.	3.9	39
21	Development of a free radical scavenging bacterial consortium to mitigate oxidative stress in cnidarians. Microbial Biotechnology, 2021, 14, 2025-2040.	4.2	30
22	Signatures of Adaptation and Acclimatization to Reef Flat and Slope Habitats in the Coral Pocillopora damicornis. Frontiers in Marine Science, 2021, 8, .	2.5	17
23	Cell wall proteomic analysis of the cnidarian photosymbionts Breviolum minutum and Cladocopium goreaui. Journal of Eukaryotic Microbiology, 2021, , e12870.	1.7	7
24	Coral adaptation to climate change: Metaâ€analysis reveals high heritability across multiple traits. Global Change Biology, 2021, 27, 5694-5710.	9.5	31
25	Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms, 2021, 9, 2209.	3.6	20
26	Early Life Stages of a Common Broadcast Spawning Coral Associate with Specific Bacterial Communities Despite Lack of Internalized Bacteria. Microbial Ecology, 2020, 79, 706-719.	2.8	30
27	Mixedâ€mode bacterial transmission in the common brooding coral <i>Pocillopora acuta</i> . Environmental Microbiology, 2020, 22, 397-412.	3.8	31
28	Bacterial and algal symbiont dynamics in early recruits exposed to two adult coral species. Coral Reefs, 2020, 39, 189-202.	2.2	15
29	Predicting the spatial distribution of allele frequencies for a gene associated with tolerance to eutrophication and high temperature in the reef-building coral, Acropora millepora, on the Great Barrier Reef. Coral Reefs, 2020, 39, 147-158.	2.2	5
30	The Effect of Thermal Stress on the Bacterial Microbiome of Exaiptasia diaphana. Microorganisms, 2020, 8, 20.	3.6	18
31	Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biology Open, 2020, 9, .	1.2	33
32	Using Modern Conservation Tools for Innovative Management of Coral Reefs: The MANACO Consortium. Frontiers in Marine Science, 2020, 7, .	2.5	6
33	Probiotics for corals. Microbiology Australia, 2020, 41, 100.	0.4	9
34	Coral evolutionary responses to microbial symbioses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190591.	4.0	36
35	A breakthrough in understanding the molecular basis of coral heat tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28546-28548.	7.1	6
36	Heat-evolved microalgal symbionts increase coral bleaching tolerance. Science Advances, 2020, 6, eaba2498.	10.3	129

3

#	Article	IF	CITATIONS
37	Genomeâ€wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Molecular Ecology, 2020, 29, 2176-2188.	3.9	46
38	Assessment of bacterial community composition within and among Acropora loripes colonies in the wild and in captivity. Coral Reefs, 2020, 39, 1245-1255.	2.2	28
39	Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research. Symbiosis, 2020, 80, 195-206.	2.3	33
40	Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont <i>Breviolum minutum</i> (Symbiodiniaceae). Ecology and Evolution, 2020, 10, 451-466.	1.9	33
41	Symbiodiniaceaeâ€bacteria interactions: rethinking metabolite exchange in reefâ€building corals as multiâ€partner metabolic networks. Environmental Microbiology, 2020, 22, 1675-1687.	3.8	89
42	Host Genotypic Effect on Algal Symbiosis Establishment in the Coral Model, the Anemone Exaiptasia diaphana, From the Great Barrier Reef. Frontiers in Marine Science, 2020, 6, .	2.5	23
43	Gene regulation underpinning increased thermal tolerance in a laboratoryâ€evolved coral photosymbiont. Molecular Ecology, 2020, 29, 1684-1703.	3.9	13
44	Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Science Advances, 2020, 6, .	10.3	44
45	Experimental Inoculation of Coral Recruits With Marine Bacteria Indicates Scope for Microbiome Manipulation in Acropora tenuis and Platygyra daedalea. Frontiers in Microbiology, 2019, 10, 1702.	3.5	55
46	Asymmetric dispersal is a critical element of concordance between biophysical dispersal models and spatial genetic structure in Great Barrier Reef corals. Diversity and Distributions, 2019, 25, 1684-1696.	4.1	27
47	The roles of age, parentage and environment on bacterial and algal endosymbiont communities in <i>Acropora</i> corals. Molecular Ecology, 2019, 28, 3830-3843.	3.9	17
48	Temporal Variation in the Microbiome of Acropora Coral Species Does Not Reflect Seasonality. Frontiers in Microbiology, 2019, 10, 1775.	3.5	29
49	Coral microbiome dynamics, functions and design in a changing world. Nature Reviews Microbiology, 2019, 17, 557-567.	28.6	267
50	The active spread of adaptive variation for reef resilience. Ecology and Evolution, 2019, 9, 11122-11135.	1.9	64
51	Thermal and Herbicide Tolerances of Chromerid Algae and Their Ability to Form a Symbiosis With Corals. Frontiers in Microbiology, 2019, 10, 173.	3.5	15
52	Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME Journal, 2019, 13, 1635-1638.	9.8	49
53	Microbiome engineering: enhancing climate resilience in corals. Frontiers in Ecology and the Environment, 2019, 17, 100-108.	4.0	58
54	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	28.6	1,138

#	Article	IF	CITATIONS
55	Hybridization as a conservation management tool. Conservation Letters, 2019, 12, e12652.	5.7	86
56	Relative stability of the Pocillopora acuta microbiome throughout a thermal stress event. Coral Reefs, 2019, 38, 373-386.	2.2	42
57	Interspecific gamete compatibility and hybrid larval fitness in reef-building corals: Implications for coral reef restoration. Scientific Reports, 2019, 9, 4757.	3.3	15
58	Observations of Simultaneous Sperm Release and Larval Planulation Suggest Reproductive Assurance in the Coral Pocillopora acuta. Frontiers in Marine Science, 2019, 6, .	2.5	18
59	Novel T4 bacteriophages associated with black band disease in corals. Environmental Microbiology, 2019, 21, 1969-1979.	3.8	13
60	Reef invertebrate viromics: diversity, host specificity and functional capacity. Environmental Microbiology, 2018, 20, 2125-2141.	3.8	41
61	Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reefâ€building coral. Molecular Ecology, 2018, 27, 1065-1080.	3.9	53
62	Highly structured prokaryote communities exist within the skeleton of coral colonies. ISME Journal, 2018, 12, 300-303.	9.8	45
63	Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Communications Biology, 2018, 1, 95.	4.4	154
64	Experimental Evolution in Coral Photosymbionts as a Tool to Increase Thermal Tolerance. Frontiers in Marine Science, 2018, 5, .	2.5	91
65	Interspecific Hybridization May Provide Novel Opportunities for Coral Reef Restoration. Frontiers in Marine Science, 2018, 5, .	2.5	51
66	Synthesis: Coral Bleaching: Patterns, Processes, Causes and Consequences. Ecological Studies, 2018, , 343-348.	1.2	18
67	Bleaching Resistance and the Role of Algal Endosymbionts. Ecological Studies, 2018, , 111-151.	1.2	34
68	Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Molecular Ecology, 2018, 27, 2956-2971.	3.9	94
69	Viruses in corals: hidden drivers of coral bleaching and disease?. Microbiology Australia, 2018, 39, 9.	0.4	11
70	Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Marine Ecology - Progress Series, 2018, 587, 117-127.	1.9	21
71	Expanding the <i>Symbiodinium</i> (Dinophyceae, Suessiales) Toolkit Through Protoplast Technology. Journal of Eukaryotic Microbiology, 2017, 64, 588-597.	1.7	24
72	Shifting paradigms in restoration of the world's coral reefs. Global Change Biology, 2017, 23, 3437-3448.	9.5	351

#	Article	IF	CITATIONS
73	Rapid thermal adaptation in photosymbionts of reefâ€building corals. Global Change Biology, 2017, 23, 4675-4688.	9.5	172
74	Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME Journal, 2017, 11, 808-812.	9.8	74
75	Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs, 2017, 36, 773-784.	2.2	36
76	Producing Coral Offspring with Cryopreserved Sperm: A Tool for Coral Reef Restoration. Scientific Reports, 2017, 7, 14432.	3.3	31
77	Rapid adaptive responses to climate change in corals. Nature Climate Change, 2017, 7, 627-636.	18.8	327
78	New interventions are needed to save coral reefs. Nature Ecology and Evolution, 2017, 1, 1420-1422.	7.8	182
79	The contribution of microbial biotechnology to mitigating coral reef degradation. Microbial Biotechnology, 2017, 10, 1236-1243.	4.2	101
80	Diversity and stability of coral endolithic microbial communities at a naturally high <i>p</i> CO ₂ reef. Molecular Ecology, 2017, 26, 5344-5357.	3.9	43
81	Engineering Strategies to Decode and Enhance the Genomes of Coral Symbionts. Frontiers in Microbiology, 2017, 8, 1220.	3.5	42
82	A PCR-Based Assay Targeting the Major Capsid Protein Gene of a Dinorna-Like ssRNA Virus That Infects Coral Photosymbionts. Frontiers in Microbiology, 2017, 8, 1665.	3.5	17
83	Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ, 2017, 5, e4054.	2.0	34
84	Genetic, morphological and growth characterisation of a new <i>Roseofilum</i> strain (Oscillatoriales, Cyanobacteria) associated with coral black band disease. PeerJ, 2016, 4, e2110.	2.0	18
85	HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts. Frontiers in Microbiology, 2016, 7, 822.	3.5	49
86	CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease. Frontiers in Microbiology, 2016, 7, 2077.	3.5	13
87	Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral. Molecular Ecology, 2016, 25, 1398-1415.	3.9	32
88	Microsatellite allele sizes alone are insufficient to delineate species boundaries in <i>Symbiodinium</i> . Molecular Ecology, 2016, 25, 2719-2723.	3.9	11
89	Temporal patterns in innate immunity parameters in reefâ€building corals and linkages with local climatic conditions. Ecosphere, 2016, 7, e01505.	2.2	18
90	Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. Conservation Genetics, 2016, 17, 577-591.	1.5	56

#	Article	IF	CITATIONS
91	Exploring the <i>Symbiodinium</i> rare biosphere provides evidence for symbiont switching in reef-building corals. ISME Journal, 2016, 10, 2693-2701.	9.8	228
92	From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen. Scientific Reports, 2016, 5, 17889.	3.3	70
93	Genetic markers for antioxidant capacity in a reef-building coral. Science Advances, 2016, 2, e1500842.	10.3	69
94	Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent <i>Symbiodinium</i> Thermal Tolerances. Molecular Biology and Evolution, 2016, 33, 2201-2215.	8.9	149
95	Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef. Molecular Ecology, 2016, 25, 3065-3080.	3.9	41
96	Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms. , 2015, 3, cov032.		33
97	Coral—the world's most diverse symbiotic ecosystem. Molecular Ecology, 2015, 24, 5330-5347.	3.9	184
98	Diverse associations among coral host haplotypes and algal endosymbionts may drive adaptation at geographically peripheral and ecologically marginal locations. Journal of Biogeography, 2015, 42, 1639-1650.	3.0	10
99	The coral immune response facilitates protection against microbes during tissue regeneration. Molecular Ecology, 2015, 24, 3390-3404.	3.9	75
100	Unexpected cryptic species diversity in the widespread coral <i>SeriatoporaÂhystrix</i> masks spatialâ€genetic patterns of connectivity. Molecular Ecology, 2015, 24, 2993-3008.	3.9	85
101	Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environmental Microbiology, 2015, 17, 3440-3449.	3.8	75
102	Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2307-2313.	7.1	709
103	Elevated seawater temperatures have a limited impact on the coral immune response following physical damage. Hydrobiologia, 2015, 759, 201-214.	2.0	30
104	Intra-genomic variation in symbiotic dinoflagellates: recent divergence or recombination between lineages?. BMC Evolutionary Biology, 2015, 15, 46.	3.2	51
105	Geographic variation in long-term trajectories of change in coral recruitment: a global-to-local perspective. Marine and Freshwater Research, 2015, 66, 609.	1.3	27
106	Quantitative high resolution melting: two methods to determine SNP allele frequencies from pooled samples. BMC Genetics, 2015, 16, 62.	2.7	14
107	Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora. PLoS ONE, 2015, 10, e0139290.	2.5	25
108	A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef. PeerJ, 2015, 3, e1092.	2.0	21

#	Article	IF	CITATIONS
109	Generating viral metagenomes from the coral holobiont. Frontiers in Microbiology, 2014, 5, 206.	3.5	54
110	Efficacy of long-term coral tissue storage in ethanol for genotyping studies. Coral Reefs, 2014, 33, 89-96.	2.2	1
111	Simultaneous determination of coenzyme Q and plastoquinone redox states in the coral–Symbiodinium symbiosis during thermally induced bleaching. Journal of Experimental Marine Biology and Ecology, 2014, 455, 1-6.	1.5	9
112	First-generation fitness consequences of interpopulational hybridisation in a Great Barrier Reef coral and its implications for assisted migration management. Coral Reefs, 2014, 33, 607-611.	2.2	34
113	Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates. PLoS ONE, 2014, 9, e107525.	2.5	75
114	Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Marine Ecology - Progress Series, 2014, 510, 39-43.	1.9	26
115	Spatial and temporal genetic structure of <i><scp>S</scp>ymbiodinium</i> populations within a common reefâ€building coral on the <scp>G</scp> reat <scp>B</scp> arrier <scp>R</scp> eef. Molecular Ecology, 2013, 22, 3693-3708.	3.9	42
116	Genotype – environment correlations in corals from the Great Barrier Reef. BMC Genetics, 2013, 14, 9.	2.7	57
117	The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs, 2013, 32, 111-120.	2.2	89
118	KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics, 2013, 14, 509.	2.8	51
119	Genetic assignment of recruits reveals short―and longâ€distance larval dispersal in <i><scp>P</scp>ocillopora damicornis</i> on the <scp>G</scp> reat <scp>B</scp> arrier <scp>R</scp> eef. Molecular Ecology, 2013, 22, 5821-5834.	3.9	34
120	Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis. Protist, 2013, 164, 237-244.	1.5	68
121	Historical thermal regimes define limits to coral acclimatization. Ecology, 2013, 94, 1078-1088.	3.2	154
122	Revisiting the connectivity puzzle of the common coral <i><scp>P</scp>ocillopora damicornis</i> . Molecular Ecology, 2013, 22, 5805-5820.	3.9	32
123	A Rapid Genetic Assay for the Identification of the Most Common Pocillopora damicornis Genetic Lineages on the Great Barrier Reef. PLoS ONE, 2013, 8, e58447.	2.5	29
124	Genetic diversity and differentiation among high-latitude broadcast-spawning coral populations disjunct from the core range. Marine Ecology - Progress Series, 2013, 491, 101-109.	1.9	10
125	High potential for formation and persistence of chimeras following aggregated larval settlement in the broadcast spawning coral, <i>Acropora millepora</i> . Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 699-708.	2.6	53
126	Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change, 2012, 2, 116-120.	18.8	393

#	Article	IF	CITATIONS
127	Molecular Delineation of Species in the Coral Holobiont. Advances in Marine Biology, 2012, 63, 1-65.	1.4	58
128	First frozen repository for the Great Barrier Reef coral created. Cryobiology, 2012, 65, 157-158.	0.7	33
129	Allorecognition maturation in the broadcast-spawning coral Acropora millepora. Coral Reefs, 2012, 31, 1019-1028.	2.2	39
130	Absence of skeleton deposition in juveniles of the scleractinian coral Acropora millepora. Coral Reefs, 2012, 31, 1111-1111.	2.2	0
131	Rarity and genetic diversity in <scp>I</scp> ndo– <scp>P</scp> acific <i><scp>A</scp>cropora</i> corals. Ecology and Evolution, 2012, 2, 1867-1888.	1.9	25
132	Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora. PLoS ONE, 2012, 7, e39099.	2.5	23
133	Impact of Light and Temperature on the Uptake of Algal Symbionts by Coral Juveniles. PLoS ONE, 2012, 7, e50311.	2.5	45
134	A multilocus, temperature stressâ€related gene expression profile assay in <i>Acropora millepora</i> , a dominant reefâ€building coral. Molecular Ecology Resources, 2011, 11, 328-334.	4.8	37
135	Symbiodinium Genotypic and Environmental Controls on Lipids in Reef Building Corals. PLoS ONE, 2011, 6, e20434.	2.5	31
136	The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Molecular Ecology, 2011, 20, 1647-1660.	3.9	160
137	Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, Acropora millepora, on the Great Barrier Reef. Molecular Ecology, 2011, 20, 4899-4914.	3.9	78
138	Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evolutionary Biology, 2011, 11, 303.	3.2	93
139	Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent <i>Symbiodinium</i> types. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1840-1850.	2.6	126
140	Novel Genetic Diversity Through Somatic Mutations: Fuel for Adaptation of Reef Corals?. Diversity, 2011, 3, 405-423.	1.7	101
141	Environmental Factors Controlling the Distribution of Symbiodinium Harboured by the Coral Acropora millepora on the Great Barrier Reef. PLoS ONE, 2011, 6, e25536.	2.5	102
142	Variation in photosynthesis and respiration in Âgeographically distinct populations of two reefâ€ʿbuilding coral species. Aquatic Biology, 2011, 12, 241-248.	1.4	15
143	Patterns of Gene Expression in a Scleractinian Coral Undergoing Natural Bleaching. Marine Biotechnology, 2010, 12, 594-604.	2.4	87
144	Determining the community structure of the coral Seriatopora hystrix from hydrodynamic and genetic networks. Ecological Modelling, 2010, 221, 2870-2880.	2.5	32

#	Article	IF	CITATIONS
145	Estimating the Potential for Adaptation of Corals to Climate Warming. PLoS ONE, 2010, 5, e9751.	2.5	114
146	Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium. PLoS ONE, 2010, 5, e10871.	2.5	159
147	Location and disturbance affect population genetic structure in four coral species of the genus Acropora on the Great Barrier Reef. Marine Ecology - Progress Series, 2010, 416, 35-45.	1.9	17
148	Eight microsatellite loci for the Irukandji syndromeâ€causing carybdeid jellyfish, <i>Carukia barnesi</i> (Cubozoa, Cnidaria). Molecular Ecology Resources, 2009, 9, 670-672.	4.8	2
149	The Roles and Interactions of Symbiont, Host and Environment in Defining Coral Fitness. PLoS ONE, 2009, 4, e6364.	2.5	176
150	Chimerism in Wild Adult Populations of the Broadcast Spawning Coral Acropora millepora on the Great Barrier Reef. PLoS ONE, 2009, 4, e7751.	2.5	67
151	Genetic diversity and connectivity in a brooding reef coral at the limit of its distribution. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3927-3935.	2.6	59
152	Coral-virus interactions: A double-edged sword?. Symbiosis, 2009, 47, 1-8.	2.3	70
153	Isolation, characterisation and cross amplification of thirteen microsatellite loci for coral endo-symbiotic dinoflagellates (Symbiodinium clade C). Conservation Genetics Resources, 2009, 1, 199-203.	0.8	18
154	High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium. Coral Reefs, 2009, 28, 215-225.	2.2	66
155	Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs, 2009, 28, 307-325.	2.2	460
156	Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs, 2009, 28, 405-414.	2.2	233
157	Microarray analysis reveals transcriptional plasticity in the reef building coral <i>Acropora millepora</i> . Molecular Ecology, 2009, 18, 3062-3075.	3.9	80
158	Highly infectious symbiont dominates initial uptake in coral juveniles. Molecular Ecology, 2009, 18, 3518-3531.	3.9	88
159	Onset of algal endosymbiont specificity varies among closely related species of <i>Acropora</i> corals during early ontogeny. Molecular Ecology, 2009, 18, 3532-3543.	3.9	147
160	Transcriptomic variation in a coral reveals pathways of clonal organisation. Marine Genomics, 2009, 2, 119-125.	1.1	18
161	Bleaching Resistance and the Role of Algal Endosymbionts. Ecological Studies, 2009, , 83-102.	1.2	51
162	Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecological Applications, 2009, 19, 18-29.	3.8	128

#	Article	IF	CITATIONS
163	Quantification of algal endosymbionts (<i>Symbiodinium</i>) in coral tissue using realâ€ŧime PCR. Molecular Ecology Resources, 2009, 9, 74-82.	4.8	96
164	Introduction: Coral Bleaching — Patterns, Processes, Causes and Consequences. Ecological Studies, 2009, , 1-5.	1.2	14
165	Synthesis: Coral Bleaching — Patterns, Processes, Causes and Consequences. Ecological Studies, 2009, , 175-176.	1.2	3
166	Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Marine Ecology - Progress Series, 2009, 392, 93-102.	1.9	99
167	Zooxanthellae (Symbiodinium, Dinophyceae) symbioses on coral reefs. Microbiology Australia, 2009, 30, 67.	0.4	1
168	Secondary Structure of the rRNA ITS2 Region Reveals Key Evolutionary Patterns in Acroporid Corals. Journal of Molecular Evolution, 2008, 67, 389-396.	1.8	21
169	Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). Journal of Experimental Marine Biology and Ecology, 2008, 364, 48-53.	1.5	108
170	Factors Affecting the Evolution of Bleaching Resistance in Corals. American Naturalist, 2008, 171, E72-E88.	2.1	42
171	Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2273-2282.	2.6	296
172	A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1359-1365.	2.6	506
173	Genetic Traces of Recent Long-Distance Dispersal in a Predominantly Self-Recruiting Coral. PLoS ONE, 2008, 3, e3401.	2.5	73
174	Some Rare Indo-Pacific Coral Species Are Probable Hybrids. PLoS ONE, 2008, 3, e3240.	2.5	64
175	Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals. Marine Ecology - Progress Series, 2008, 361, 139-150.	1.9	63
176	Perspective: Hidden diversity in coral endosymbionts unveiled. Molecular Ecology, 2007, 16, 1125-1126.	3.9	5
177	Inter-polyp genetic and physiological characterisation of Symbiodinium in an Acropora valida colony. Marine Biology, 2007, 153, 225-234.	1.5	30
178	Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs, 2007, 26, 449-457.	2.2	226
179	Theme section on the "Conservation Genetics of Coral Reefs― Coral Reefs, 2007, 26, 461-462.	2.2	Ο
180	Apparent Involvement of a β1 Type Integrin in Coral Fertilization. Marine Biotechnology, 2007, 9, 760-765.	2.4	8

#	Article	IF	CITATIONS
181	The Role of Hybridization in the Evolution of Reef Corals. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 489-517.	8.3	206
182	Development of 10 polymorphic microsatellite markers from herbicide-bleached tissues of the brooding pocilloporid coral Seriatopora hystrix. Molecular Ecology Notes, 2006, 6, 176-178.	1.7	34
183	PRIMER NOTE: Ten microsatellite loci for the reef-building coral Acropora millepora (Cnidaria,) Tj ETQq1 1 0.7843	.4.rgBT /O 1.7	verlock 10 T
184	Conservation genetics and the resilience of reef-building corals. Molecular Ecology, 2006, 15, 3863-3883.	3.9	203
185	Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Molecular Ecology, 2006, 16, 771-784.	3.9	200
186	Contrasting patterns of genetic structure in two species of the coral trout Plectropomus (Serranidae) from east and west Australia: Introgressive hybridisation or ancestral polymorphisms. Molecular Phylogenetics and Evolution, 2006, 41, 420-435.	2.7	65
187	Genetic structure of a reef-building coral from thermally distinct environments on the Great Barrier Reef. Coral Reefs, 2006, 25, 493-502.	2.2	50
188	The role of zooxanthellae in the thermal tolerance of corals: a â€~nugget of hope' for coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2305-2312.	2.6	1,019
189	Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Marine Ecology - Progress Series, 2006, 314, 135-148.	1.9	124
190	Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Molecular Ecology, 2005, 14, 2403-2417.	3.9	168
191	Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs, 2005, 24, 482-487.	2.2	120
192	Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals. Science, 2004, 304, 1492-1494.	12.6	530
193	Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular Ecology, 2004, 13, 2445-2458.	3.9	221
194	Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Marine Biology, 2004, 144, 1-7.	1.5	74
195	Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Marine Biology, 2004, 144, 9-18.	1.5	47
196	Unexpected patterns of genetic structuring among locations but not colour morphs in Acropora nasuta (Cnidaria; Scleractinia). Molecular Ecology, 2004, 13, 9-20.	3.9	57
197	No evidence for parallel sympatric speciation in cichlid species of the genus Pseudotropheus from north-western Lake Malawi. Journal of Evolutionary Biology, 2003, 16, 37-46.	1.7	27
198	A 'fair go'* for coral hybridization. Molecular Ecology, 2003, 12, 805-807.	3.9	39

#	Article	IF	CITATIONS
199	Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Molecular Ecology, 2003, 12, 3477-3484.	3.9	185
200	Pseudogenes Contribute to the Extreme Diversity of Nuclear Ribosomal DNA in the Hard Coral Acropora. Molecular Biology and Evolution, 2003, 20, 1077-1086.	8.9	92
201	Sympatric populations of the highly cross-fertile coral speciesAcropora hyacinthusandAcropora cythereaare genetically distinct. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1289-1294.	2.6	41
202	The Mitochondrial Genome of Acropora tenuis (Cnidaria; Scleractinia) Contains a Large Group I Intron and a Candidate Control Region. Journal of Molecular Evolution, 2002, 55, 1-13.	1.8	111
203	The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Molecular Ecology, 2002, 11, 1339-1349.	3.9	68
204	Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Molecular Ecology, 2002, 11, 1363-1376.	3.9	125
205	Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology, 2002, 11, 2475-2487.	3.9	485
206	The Evolutionary History of the Coral Genus Acropora (Scleractinia, Cnidaria) Based on a Mitochondrial and a Nuclear Marker: Reticulation, Incomplete Lineage Sorting, or Morphological Convergence?. Molecular Biology and Evolution, 2001, 18, 1315-1329.	8.9	256
207	In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs, 2001, 20, 200-200.	2.2	38
208	Correction for van Oppen et al. , Patterns of coral–dinoflagellate associations in Acropora : significance of local availability and physiology of Symbiodinium strains and host–symbiont selectivity. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2617-2617.	2.6	14
209	Patterns of coral–dinoflagellate associations in Acropora : significance of local availability and physiology of Symbiodinium strains and host–symbiont selectivity. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1759-1767.	2.6	259
210	Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Molecular Ecology, 2000, 9, 1363-1373.	3.9	180
211	Extensive Homoplasy, Nonstepwise Mutations, and Shared Ancestral Polymorphism at a Complex Microsatellite Locus in Lake Malawi Cichlids. Molecular Biology and Evolution, 2000, 17, 489-498.	8.9	82
212	Evidence for male-biased dispersal in Lake Malawi cichlids from microsatellites. Molecular Ecology, 1999, 8, 1521-1527.	3.9	76
213	Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 179-183.	2.6	95
214	Assortative mating among rock-dwelling cichlid fishes supports high estimates of species richness from Lake Malawi. Molecular Ecology, 1998, 7, 991-1001.	3.9	115
215	Microsatellite paternity analysis on captive Lake Malawi cichlids supports reproductive isolation by direct mate choice. Molecular Ecology, 1998, 7, 1605-1610.	3.9	73
216	Molecular Zoology: Advances, Strategies, and Protocols Journal of Applied Ecology, 1997, 34, 831.	4.0	35

#	Article	IF	CITATIONS
217	Unusually fine–scale genetic structuring found in rapidly speciating Malawi cichlid fishes. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1803-1812.	2.6	116
218	PHYLOGENY AND HISTORICAL ECOLOGY OF THE DESMARESTIACEAE (PHAEOPHYCEAE) SUPPORT A SOUTHERN HEMISPHERE ORIGIN1. Journal of Phycology, 1997, 33, 294-309.	2.3	105
219	Isolation and characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra. Molecular Ecology, 1997, 6, 387-388.	3.9	119
220	Temperature responses of tropical to warm-temperate Atlantic seaweeds. I. Absence of ecotypic differentiation in amphi-Atlantic tropical-Canary Islands species. European Journal of Phycology, 1996, 31, 123-132.	2.0	25
221	Hidden Diversity in Marine Algae: Some Examples of Genetic Variation Below The Species Level. Journal of the United Kingdom, 1996, 76, 239-242.	0.8	26
222	ASSESSING THE LIMITS OF RANDOM AMPLIFIED POLYMORPHIC DNAs (RAPDs) IN SEAWEED BIOGEOGRAPHY1. Journal of Phycology, 1996, 32, 433-444.	2.3	41
223	Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Marine Biology, 1995, 123, 179-188.	1.5	118
224	Genetic variation within and among North Atlantic and Baltic populations of the benthic algaPhycodrys rubens(Rhodophyta). European Journal of Phycology, 1995, 30, 251-260.	2.0	56
225	TRACKING DISPERSAL ROUTES: PHYLOGEOGRAPHY OF THE ARCTIC-ANTARCTIC DISJUNCT SEAWEED ACROSIPHONIA ARCTA (CHLOROPHYTA)1. Journal of Phycology, 1994, 30, 67-80.	2.3	73
226	Arctic-Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Marine Biology, 1993, 115, 381-386.	1.5	85
227	Heat-Evolved Microalgal Symbionts Increase Thermal Bleaching Tolerance of Coral Juveniles Without a Trade-Off Against Growth. SSRN Electronic Journal, 0, , .	0.4	1
228	Challenges of sperm cryopreservation in transferring heat adaptation of corals across ocean basins. PeerJ, 0, 10, e13395.	2.0	0