Takuya Hara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9386443/publications.pdf

Version: 2024-02-01

		218677	214800
54	2,252	26	47
papers	citations	h-index	g-index
55	55	55	1643
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Mars system revealed by the Martian Moons eXploration mission. Earth, Planets and Space, 2022, 74, .	2.5	11
2	A Comparative Study of Magnetic Flux Ropes in the Nightside Induced Magnetosphere of Mars and Venus. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
3	MAVEN Survey of Magnetic Flux Rope Properties in the Martian Ionosphere: Comparison With Three Types of Formation Mechanisms. Geophysical Research Letters, 2021, 48, e2021GL093296.	4.0	13
4	Influence of the Solar Wind Dynamic Pressure on the Ion Precipitation: MAVEN Observations and Simulation Results. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028183.	2.4	6
5	lon Jets Within Current Sheets in the Martian Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028576.	2.4	20
6	Influence of Extreme Ultraviolet Irradiance Variations on the Precipitating Ion Flux From MAVEN Observations. Geophysical Research Letters, 2019, 46, 7761-7768.	4.0	5
7	Statistical Study of Heavy Ion Outflows From Mars Observed in the Martianâ€Induced Magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 2019, 124, 5482-5497.	2.4	29
8	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	2.4	6
9	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
10	Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8707-8726.	2.4	8
11	Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432.	2.4	6
12	Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4550-4558.	4.0	44
13	On Mars's Atmospheric Sputtering After MAVEN's First Martian Year of Measurements. Geophysical Research Letters, 2018, 45, 4685-4691.	4.0	25
14	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	2.4	16
15	Cold Dense Ion Outflow Observed in the Martianâ€Induced Magnetotail by MAVEN. Geophysical Research Letters, 2018, 45, 5283-5289.	4.0	22
16	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
17	MAVEN Observations of Solar Windâ€Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 4129-4149.	2.4	40
18	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	4.0	66

#	Article	IF	CITATIONS
19	MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. Journal of Geophysical Research: Space Physics, 2017, 122, 1083-1101.	2.4	19
20	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	2.4	78
21	Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 5114-5131.	2.4	40
22	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209.	2.4	40
23	MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 4308-4324.	2.4	37
24	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	2.4	21
25	Highâ€Altitude Closed Magnetic Loops at Mars Observed by MAVEN. Geophysical Research Letters, 2017, 44, 11,229.	4.0	26
26	Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9723-9737.	2.4	44
27	On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES. Journal of Geophysical Research E: Planets, 2017, 122, 2401-2428.	3.6	27
28	Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 2374-2397.	2.4	66
29	Electric Mars: A large transâ€ŧerminator electric potential drop on closed magnetic field lines above Utopia Planitia. Journal of Geophysical Research: Space Physics, 2017, 122, 2260-2271.	2.4	16
30	Dynamic response of the Martian ionosphere to an interplanetary shock: Mars Express and MAVEN observations. Geophysical Research Letters, 2017, 44, 9116-9123.	4.0	14
31	Ion Heating in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 10,612.	2.4	8
32	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	4.0	28
33	MAVEN observations of electronâ€induced whistler mode waves in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 9717-9731.	2.4	27
34	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	4.0	14
35	Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 2016, 43, 1426-1434.	4.0	36
36	MAVEN observations of partially developed Kelvinâ€Helmholtz vortices at Mars. Geophysical Research Letters, 2016, 43, 4763-4773.	4.0	38

#	Article	IF	Citations
37	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. Proceedings of the International Astronomical Union, 2016, 12, 211-217.	0.0	O
38	MAVEN observations of energyâ€time dispersed electron signatures in Martian crustal magnetic fields. Geophysical Research Letters, 2016, 43, 939-944.	4.0	18
39	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	4.0	52
40	Response of Mars O ⁺ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN dataâ€based models. Geophysical Research Letters, 2015, 42, 9095-9102.	4.0	47
41	Timeâ€dispersed ion signatures observed in the Martian magnetosphere by MAVEN. Geophysical Research Letters, 2015, 42, 8910-8916.	4.0	25
42	Magnetic reconnection in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8838-8845.	4.0	59
43	Marsward and tailward ions in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8925-8932.	4.0	34
44	Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN. Geophysical Research Letters, 2015, 42, 9135-9141.	4.0	39
45	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	4.0	17
46	Asymmetric penetration of shocked solar wind down to 400 km altitudes at Mars. Journal of Geophysical Research: Space Physics, 2015, 120, 6874-6883.	2.4	7
47	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	4.0	115
48	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
49	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
50	Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape. Planetary and Space Science, 2015, 115, 35-47.	1.7	51
51	Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad‧hafranov reconstruction. Journal of Geophysical Research: Space Physics, 2014, 119, 7947-7962.	2.4	22
52	The spatial structure of Martian magnetic flux ropes recovered by the Gradâ€Shafranov reconstruction technique. Journal of Geophysical Research: Space Physics, 2014, 119, 1262-1271.	2.4	20
53	Statistical properties of planetary heavyâ€ion precipitations toward the Martian ionosphere obtained from Mars Express. Journal of Geophysical Research: Space Physics, 2013, 118, 5348-5357.	2.4	14
54	Heavy-ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA-3 observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29