Massimo Mattia Santoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9386281/publications.pdf

Version: 2024-02-01

		212478	175968
57	4,571	28	55
papers	citations	h-index	g-index
57	57	57	8910
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Developmental Cell, 2008, 15, 272-284.	3.1	1,489
2	Cellular and molecular facets of keratinocyte reepithelization during wound healing. Experimental Cell Research, 2005, 304, 274-286.	1.2	329
3	Blood flow controls bone vascular function and osteogenesis. Nature Communications, 2016, 7, 13601.	5.8	261
4	IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. Nature Cell Biology, 2008, 10, 1309-1317.	4.6	228
5	The MSP Receptor Regulates $\hat{l}\pm6\hat{l}^24$ and $\hat{l}\pm3\hat{l}^21$ Integrins via 14-3-3 Proteins in Keratinocyte Migration. Developmental Cell, 2003, 5, 257-271.	3.1	193
6	Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis. Cell, 2013, 152, 504-518.	13.5	176
7	Birc2 (clap1) regulates endothelial cell integrity and blood vessel homeostasis. Nature Genetics, 2007, 39, 1397-1402.	9.4	131
8	A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Developmental Biology, 2007, 307, 29-42.	0.9	123
9	ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Scientific Reports, 2014, 4, .	1.6	112
10	ROS signaling and redox biology in endothelial cells. Cellular and Molecular Life Sciences, 2015, 72, 3281-3303.	2.4	112
11	Characterization of vascular mural cells during zebrafish development. Mechanisms of Development, 2009, 126, 638-649.	1.7	111
12	CARD-Mediated Autoinhibition of cIAP1's E3 Ligase Activity Suppresses Cell Proliferation and Migration. Molecular Cell, 2011, 42, 569-583.	4.5	89
13	Point mutations in the tyrosine kinase domain release the oncogenic and metastatic potential of the ron receptor. Oncogene, 1998, 17, 741-749.	2.6	88
14	An α-Smooth Muscle Actin (acta2/αsma) Zebrafish Transgenic Line Marking Vascular Mural Cells and Visceral Smooth Muscle Cells. PLoS ONE, 2014, 9, e90590.	1.1	79
15	PPFIA1 drives active $\hat{i}\pm 5\hat{i}^21$ integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nature Communications, 2016, 7, 13546.	5.8	72
16	The Antioxidant Role of Non-mitochondrial CoQ10: Mystery Solved!. Cell Metabolism, 2020, 31, 13-15.	7.2	64
17	Cilia Control Vascular Mural Cell Recruitment in Vertebrates. Cell Reports, 2017, 18, 1033-1047.	2.9	60
18	Analysis of Oxidative Stress in Zebrafish Embryos. Journal of Visualized Experiments, 2014, , .	0.2	57

#	Article	IF	CITATIONS
19	Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells. Nature Communications, 2018, 9, 4077.	5.8	55
20	The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation. Haematologica, 2015, 100, 720-729.	1.7	54
21	The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Molecular and Cellular Neurosciences, 2015, 68, 103-119.	1.0	51
22	Zebrafish as a model to explore cell metabolism. Trends in Endocrinology and Metabolism, 2014, 25, 546-554.	3.1	40
23	Adaptive redox homeostasis in cutaneous melanoma. Redox Biology, 2020, 37, 101753.	3.9	37
24	Diacylglycerol Kinase- \hat{l} ± Mediates Hepatocyte Growth Factor-induced Epithelial Cell Scatter by Regulating Rac Activation and Membrane Ruffling. Molecular Biology of the Cell, 2007, 18, 4859-4871.	0.9	33
25	Phylogeny informs ontogeny: a proposed common theme in the arterial pole of the vertebrate heart. Evolution & Development, 2010, 12, 552-567.	1.1	33
26	"Decoding―Angiogenesis: New Facets Controlling Endothelial Cell Behavior. Frontiers in Physiology, 2016, 7, 306.	1.3	33
27	Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues. Free Radical Biology and Medicine, 2017, 109, 189-200.	1.3	32
28	miRNAs in endothelial cell signaling: The endomiRNAs. Experimental Cell Research, 2013, 319, 1324-1330.	1.2	31
29	An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development (Cambridge), 2017, 144, 464-478.	1.2	31
30	Antiangiogenic Cancer Drug Using the Zebrafish Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1846-1853.	1.1	28
31	New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovascular Research, 2018, 114, 481-491.	1.8	27
32	Geldanamycins Trigger a Novel Ron Degradative Pathway, Hampering Oncogenic Signaling*. Journal of Biological Chemistry, 2006, 281, 21710-21719.	1.6	25
33	Knockdown of cathepsin D in zebrafish fertilized eggs determines congenital myopathy. Bioscience Reports, 2013, 33, e00034.	1.1	23
34	The origin and mechanisms of smooth muscle cell development in vertebrates. Development (Cambridge), 2021, 148, .	1.2	23
35	Fashioning blood vessels by ROS signalling and metabolism. Seminars in Cell and Developmental Biology, 2018, 80, 35-42.	2.3	21
36	Role of amino acid metabolism in angiogenesis. Vascular Pharmacology, 2019, 112, 17-23.	1.0	19

#	Article	IF	Citations
37	Compound heterozygous loss-of-function mutations in KIF2OA are associated with a novel lethal congenital cardiomyopathy in two siblings. PLoS Genetics, 2018, 14, e1007138.	1.5	18
38	The Ron oncogenic activity induced by the MEN2B-like substitution overcomes the requirement for the multifunctional docking site. Oncogene, 2000, 19, 5208-5211.	2.6	17
39	Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons. Cell Reports, 2015, 11, 1786-1796.	2.9	15
40	Rapid high performance liquid chromatography–high resolution mass spectrometry methodology for multiple prenol lipids analysis in zebrafish embryos. Journal of Chromatography A, 2015, 1412, 59-66.	1.8	15
41	LPHN2 inhibits vascular permeability by differential control of endothelial cell adhesion. Journal of Cell Biology, 2021, 220, .	2.3	15
42	13C-isotope-based protocol for prenyl lipid metabolic analysis in zebrafish embryos. Nature Protocols, 2013, 8, 2337-2347.	5.5	14
43	Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death and Disease, 2021, 12, 100.	2.7	13
44	UBIAD1 and CoQ10 protect melanoma cells from lipid peroxidation-mediated cell death. Redox Biology, 2022, 51, 102272.	3.9	12
45	Transgenic Zebrafish. Methods in Molecular Biology, 2016, 1464, 107-114.	0.4	11
46	Aspartate metabolism in endothelial cells activates the mTORC1 pathway to initiate translation during angiogenesis. Developmental Cell, 2022, 57, 1241-1256.e8.	3.1	11
47	Protein phosphatase 1 binds to phospho-Ser-1394 of the macrophage-stimulating protein receptor. Biochemical Journal, 2003, 376, 587-594.	1.7	10
48	"Fishing―for endothelial microRNA functions and dysfunction. Vascular Pharmacology, 2011, 55, 60-68.	1.0	10
49	Oxidative pentose phosphate pathway controls vascular mural cell coverage by regulating extracellular matrix composition. Nature Metabolism, 2022, 4, 123-140.	5.1	10
50	Data on metabolic-dependent antioxidant response in the cardiovascular tissues of living zebrafish under stress conditions. Data in Brief, 2017, 12, 427-432.	0.5	7
51	Time to fight: targeting the circadian clock molecular machinery in cancer therapy. Drug Discovery Today, 2021, 26, 1164-1184.	3.2	7
52	The admiR-able advances in cardiovascular biology through the zebrafish model system. Cellular and Molecular Life Sciences, 2013, 70, 2489-2503.	2.4	5
53	Advantages and Challenges of Cardiovascular and Lymphatic Studies in Zebrafish Research. Frontiers in Cell and Developmental Biology, 2019, 7, 89.	1.8	5
54	Cancer-Induced Metabolic Rewiring of Tumor Endothelial Cells. Cancers, 2022, 14, 2735.	1.7	3

#	Article	IF	CITATIONS
55	Before the Pump. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2763-2764.	1.1	2
56	Tumor Angiogenesis: Fishing for Screening Models. , 2013, , 293-312.		1
57	YAP/TAZ–TEAD link angiogenesis to nutrients. Nature Metabolism, 0, , .	5.1	O