Finizia Auriemma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9385676/publications.pdf

Version: 2024-02-01

191	7,079	46	74
papers	citations	h-index	g-index
193	193	193	4423 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Thermal Fractionation of Ethylene/1-Octene Multiblock Copolymers from Chain Shuttling Polymerization. Macromolecules, 2022, 55, 5656-5668.	2.2	9
2	Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials. Macromolecules, 2022, 55, 5017-5026.	2.2	11
3	Mechanical properties of isotactic 1-butene-ethylene copolymers from Ziegler-Natta catalyst. Polymer, 2021, 216, 123408.	1.8	2
4	Time-resolving small angle X-Ray scattering analysis of melt crystallization of mixtures of regular and irregular isotactic polypropylene samples. Polymer, 2021, 215, 123411.	1.8	0
5	Rheology and morphology of Pluronic F68 in water. Physics of Fluids, 2021, 33, .	1.6	19
6	Microstructural insight on strain-induced crystallization of ethylene/propylene(/diene) random copolymers. Polymer, 2021, 227, 123848.	1.8	2
7	Mechanical Properties and Elastic Behavior of Copolymers of Syndiotactic Polypropylene with 1-Hexene and 1-Octene. Macromolecules, 2021, 54, 6810-6823.	2.2	3
8	Evidence of Nodular Morphology in Syndiotactic Polypropylene from the Quenched State. Macromolecules, 2021, 54, 7540-7551.	2.2	6
9	In-Depth Analysis of the Nonuniform Chain Microstructure of Multiblock Copolymers from Chain-Shuttling Polymerization. Macromolecules, 2021, 54, 10891-10902.	2.2	17
10	Molecular Features Behind Formation of \hat{l}_{\pm} or \hat{l}_{\pm}^2 Co-Crystalline and Nanoporous-Crystalline Phases of PPO. Frontiers in Chemistry, 2021, 9, 809850.	1.8	7
11	Curing Efficiency of Novolac-Type Phenol–Formaldehyde Resins from Viscoelastic Properties. Macromolecules, 2021, 54, 11372-11383.	2.2	4
12	Nanostructured dimethacrylate-based photopolymerizable systems by modification with diblock copolymers. Polymer, 2021, 237, 124360.	1.8	2
13	Block Copolymersâ€Based Nanoporous Thin Films with Tailored Morphology for Biomolecules Adsorption. Advanced Materials Interfaces, 2020, 7, 1901580.	1.9	5
14	The blocky structure of Ziegler–Natta "random―copolymers: myths and experimental evidence. Polymer Chemistry, 2020, 11, 34-38.	1.9	24
15	Tailored inclusion of semiconductor nanoparticles in nanoporous polystyrene-block-polymethyl methacrylate thin films. Polymer, 2020, 210, 122983.	1.8	2
16	Propylene–Butene Copolymers: Tailoring Mechanical Properties from Isotactic Polypropylene to Polybutene. Macromolecules, 2020, 53, 4407-4421.	2.2	24
17	Transmission electron microscopy analysis of multiblock ethylene/1-octene copolymers. Polymer, 2020, 193, 122347.	1.8	12
18	Generation of well relaxed all atom models of stereoregular polymers: a validation of hybrid particle-field molecular dynamics for polypropylene melts of different tacticities. Soft Materials, 2020, 18, 228-241.	0.8	6

#	Article	IF	CITATIONS
19	Polymorphism in polymers: A tool to tailor material's properties. Polymer Crystallization, 2020, 3, e10101.	0.5	36
20	Polyolefins based crystalline block copolymers: Ordered nanostructures from control of crystallization. Polymer, 2020, 196, 122423.	1.8	20
21	Polymorphism and form II – form I transformation in Ziegler-Natta isotactic 1-butene-ethylene copolymers having a multiblock molecular structure. Polymer, 2020, 198, 122460.	1.8	6
22	Effect of stretching on the crystallization of un-crosslinked ethylene/propylene(/diene) random copolymers. Polymer, 2020, 199, 122540.	1.8	10
23	Morphology of Isotactic Polypropylene–Polyethylene Block Copolymers Driven by Controlled Crystallization. Macromolecules, 2020, 53, 10234-10244.	2.2	16
24	Synthesis, chain conformation and crystal structure of poly(norbornadiene) having repeating 3,5-enchained nortricyclene units. Polymer Chemistry, 2019, 10, 4593-4603.	1.9	7
25	Crystallization behavior, morphology and crystal transformation of blends of isotactic Poly(1-Butene) with propene-hexene copolymer. Polymer, 2019, 183, 121826.	1.8	9
26	Ethylene-co-norbornene Copolymerization Using a Dual Catalyst System in the Presence of a Chain Transfer Agent. Polymers, 2019, 11, 554.	2.0	12
27	Structure and Mechanical Properties of Ethylene/1-Octene Multiblock Copolymers from Chain Shuttling Technology. Macromolecules, 2019, 52, 2669-2680.	2.2	23
28	Crystallization Behavior of Copolymers of Isotactic Poly(1-butene) with Ethylene from Ziegler–Natta Catalyst: Evidence of the Blocky Molecular Structure. Macromolecules, 2019, 52, 9114-9127.	2.2	31
29	Two Nanoporous Crystalline Forms of Poly(2,6-dimethyl-1,4-phenylene)oxide and Related Co-Crystalline Forms. Macromolecules, 2019, 52, 9646-9656.	2.2	50
30	Mechanical Properties and Morphology of Propene–Pentene Isotactic Copolymers. Macromolecules, 2018, 51, 3030-3040.	2.2	25
31	Relationships among lamellar morphology parameters, structure and thermal behavior of isotactic propene-pentene copolymers: The role of incorporation of comonomeric units in the crystals. European Polymer Journal, 2018, 103, 251-259.	2.6	21
32	Mechanical Properties of Isotactic 1,2-Poly(E-3-methyl-1,3-pentadiene): An Example of Rubbery Elasticity below Glass Transition Temperature. Macromolecules, 2018, 51, 488-496.	2.2	9
33	Structural Investigation at Nanometric Length Scale of Ethylene/1-Octene Multiblock Copolymers from Chain-Shuttling Technology. Macromolecules, 2018, 51, 9613-9625.	2.2	18
34	Crystallization and mechanical properties of metallocene made 1-butene-pentene and 1-butene-hexene isotactic copolymers. Polymer, 2018, 158, 231-242.	1.8	27
35	A Rheological Investigation of the Crystallization Kinetics of Syndiotactic Polypropylene of Varying Degree of Tacticity. International Polymer Processing, 2018, 33, 381-386.	0.3	1
36	Synthesis and Structure of Syndiotactic Poly(3-methyl-1-butene): A Case of 3/1 Helical Conformation for Syndiotactic Polymers. Macromolecules, 2018, 51, 8574-8584.	2.2	5

3

#	Article	IF	CITATIONS
37	Unveiling the molecular structure of ethylene/1-octene multi-block copolymers from chain shuttling technology. Polymer, 2018, 154, 298-304.	1.8	29
38	Crystal structures and polymorphism of polymers: Influence of defects and disorder. Polymer Crystallization, 2018, 1, e10015.	0.5	22
39	Ethylene–co–norbornene copolymerization in the presence of a chain transfer agent. European Polymer Journal, 2018, 107, 54-66.	2.6	12
40	Time-Resolving Study of Stress-Induced Transformations of Isotactic Polypropylene through Wide Angle X-ray Scattering Measurements. Polymers, 2018, 10, 162.	2.0	21
41	Perfectly Alternating Ethylene/2-Butene Copolymers by Hydrogenation of Highly Stereoregular 1,4-Poly(1,3-diene)s: Synthesis and Characterization. Macromolecules, 2017, 50, 754-761.	2.2	11
42	Controlling Size and Orientation of Lamellar Microdomains in Crystalline Block Copolymers. ACS Applied Materials & Diterfaces, 2017, 9, 31252-31259.	4.0	21
43	Deformation of Stereoirregular Isotactic Polypropylene across Length Scales. Influence of Temperature. Macromolecules, 2017, 50, 2856-2870.	2.2	33
44	Tailoring the properties of polypropylene in the polymerization reactor using polymeric nucleating agents as prepolymers on the Ziegler–Natta catalyst granule. Polymer Chemistry, 2017, 8, 655-660.	1.9	18
45	Yield behavior of random copolymers of isotactic polypropylene. Polymer, 2017, 129, 235-246.	1.8	21
46	Confinement of Semiconductor ZnO Nanoparticles in Block Copolymer Nanostructure. Journal of Physical Chemistry C, 2017, 121, 16617-16628.	1.5	8
47	Nano-in-Nano Approach for Enzyme Immobilization Based on Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29318-29327.	4.0	22
48	Crystal Structure and Properties of Isotactic 1,2-Poly(<i>E</i> -3-methyl-1,3-pentadiene). Macromolecules, 2017, 50, 5412-5424.	2.2	4
49	The "Nodular―α Form of Isotactic Polypropylene: Stiff and Strong Polypropylene with High Deformability. Macromolecules, 2017, 50, 5434-5446.	2.2	28
50	A hypothesis on different technological solutions for outdoor and indoor Roman wall paintings. Archaeological and Anthropological Sciences, 2017, 9, 591-602.	0.7	11
51	Isotactic and Syndiotactic Alternating Ethylene/Propylene Copolymers Obtained Through Non-Catalytic Hydrogenation of Highly Stereoregular cis-1,4 Poly(1,3-diene)s. Molecules, 2017, 22, 755.	1.7	8
52	Effects of water sorption on poly(lactic acid). Polymer, 2016, 99, 130-139.	1.8	22
53	Predicting the glass transition temperature as function of crosslink density and polymer interactions in rubber compounds. AIP Conference Proceedings, 2016, , .	0.3	5
54	Relationships among migration properties, molecular structure and catalytic process of isotactic copolymers of propene. European Polymer Journal, 2016, 82, 277-289.	2.6	5

#	Article	IF	CITATIONS
55	Molecular View of Properties of Random Copolymers of Isotactic Polypropylene. Advances in Polymer Science, 2016, , 45-92.	0.4	19
56	Melting and crystallization behavior of binary blends of syndiotactic polypropylenes of different stereoregularity. European Polymer Journal, 2016, 84, 589-601.	2.6	2
57	Mesophase Tuning in Discotic Dimers π-Conjugated Ionic Liquid Crystals through Supramolecular Interactions and the Thermal History. Crystal Growth and Design, 2016, 16, 5646-5656.	1.4	19
58	Relationship Between Molecular Configuration and Stress-Induced Phase Transitions. , 2016, , 287-327.		11
59	Oriented Microstructures of Crystalline–Crystalline Block Copolymers Induced by Epitaxy and Competitive and Confined Crystallization. Macromolecules, 2016, 49, 5576-5586.	2.2	28
60	Tuning Ordered Pattern of Pd Species through Controlled Block Copolymer Self-Assembly. Journal of Physical Chemistry B, 2016, 120, 6829-6841.	1.2	6
61	Simple Theoretical Considerations for Blockâ€Copolymerâ€Based Plasmonic Metamaterials. Macromolecular Symposia, 2016, 359, 72-78.	0.4	3
62	Thermoplastic elastomers from binary blends of syndiotactic polypropylenes with different stereoregularity. Polymer, 2016, 85, 114-124.	1.8	8
63	Lipase immobilization for catalytic applications obtained using fumed silica deposited with MAPLE technique. Applied Surface Science, 2016, 374, 346-352.	3.1	11
64	Tailoring the properties of polymers via formation of a mesophase. AIP Conference Proceedings, 2015, ,	0.3	0
65	Selective inclusion of chromophore molecules into poly(styrene-b-methylmethacrylate) block copolymer nanodomains: a study of morphological, optical and electrical properties. Journal of Sol-Gel Science and Technology, 2015, 73, 634-640.	1.1	3
66	Crystallization behavior and mechanical properties of copolymers of isotactic poly(1-butene) with 1-octene from metallocene catalysts. Polymer, 2015, 73, 156-169.	1.8	27
67	Crystallization of Alternating Limonene Oxide/Carbon Dioxide Copolymers: Determination of the Crystal Structure of Stereocomplex Poly(limonene carbonate). Macromolecules, 2015, 48, 2534-2550.	2.2	49
68	Toward hyperuniform disordered plasmonic nanostructures for reproducible surface-enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 8061-8069.	1.3	60
69	Structure of Isotactic Ethylene/4-Methyl-1,3-pentadiene Alternating Copolymers Obtained from Postmetallocene Catalysts. Macromolecules, 2015, 48, 6931-6940.	2.2	3
70	Crystal Structure of Isotactic Poly((<i>R</i> , <i>S</i>)-3-methyl-1-pentene). Macromolecules, 2015, 48, 5251-5266.	2.2	7
71	Chirality, entropy and crystallization in polymers: isotactic poly(3-methyl-1-pentene) as an example of influence of chirality and entropy on the crystal structure. CrystEngComm, 2015, 17, 6006-6013.	1.3	6
72	Stereocomplexed Poly(Limonene Carbonate): A Unique Example of the Cocrystallization of Amorphous Enantiomeric Polymers. Angewandte Chemie - International Edition, 2015, 54, 1215-1218.	7.2	138

#	Article	IF	CITATIONS
73	Structure–property relationships in polyethylene based films obtained by blow molding as model system of industrial relevance. European Polymer Journal, 2015, 62, 97-107.	2.6	17
74	Control on titania nanostructure by combining block copolymer assisted sol–gel synthesis with rapid flux solvent atmosphere treatment. European Polymer Journal, 2014, 59, 270-281.	2.6	4
75	Kinetic Analysis of Cryotropic Gelation of Poly(Vinyl Alcohol)/Water Solutions by Small-Angle Neutron Scattering. Advances in Polymer Science, 2014, , 159-197.	0.4	18
76	Crystallization of the mesomorphic form and control of the molecular structure for tailoring the mechanical properties of isotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 677-699.	2.4	37
77	Rapid-flux-solvent-atmosphere method for tailoring the morphology of titania substrates over a large area via direct self-assembly of block copolymers. RSC Advances, 2014, 4, 16721-16725.	1.7	4
78	Mechanical Properties and Stress-Induced Phase Transformations of Metallocene Isotactic Poly(1-butene): The Influence of Stereodefects. Macromolecules, 2014, 47, 1053-1064.	2.2	55
79	Polymorphic Behavior and Mechanical Properties of Isotactic 1-Butene–Ethylene Copolymers from Metallocene Catalysts. Macromolecules, 2014, 47, 4317-4329.	2.2	72
80	Stability and phase transformations of the mesomorphic form of isotactic polypropylene in stereodefective polypropylene. European Polymer Journal, 2013, 49, 3590-3600.	2.6	22
81	Relations between Stereoregularity and Melt Viscoelasticity of Syndiotactic Polypropylene. Macromolecules, 2013, 46, 7940-7946.	2.2	26
82	Morphology and Mechanical Properties of the Mesomorphic Form of Isotactic Polypropylene in Stereodefective Polypropylene. Macromolecules, 2013, 46, 5202-5214.	2.2	53
83	Small Angle X-ray Scattering Investigation of Norbornene-Terminated Syndiotactic Polypropylene and Corresponding Comb-Like Poly(macromonomer). Journal of Physical Chemistry B, 2013, 117, 10320-10333.	1.2	9
84	Nanocomposites from Block Copolymer Lamellar Nanostructures and Selective Gold Deposition. Journal of Nanoscience and Nanotechnology, 2013, 13, 5215-5220.	0.9	4
85	Tailoring Mechanical Properties of Isotactic Polypropylene Via Crystallization of the Mesophase and Control of Stereodefects Concentration. Macromolecular Chemistry and Physics, 2013, 214, 1951-1964.	1.1	21
86	The Role of Shape and Size of Guest Molecules in the Formation of Clathrates and Intercalates of Syndiotactic Polystyrene. Macromolecular Chemistry and Physics, 2013, 214, 1901-1911.	1.1	20
87	Synthesis and Ring-Opening Metathesis Polymerization of Norbornene-Terminated Syndiotactic Polypropylene. Macromolecules, 2012, 45, 7863-7877.	2.2	32
88	Crystal Structure of the Trigonal Form of Isotactic Propylene–Pentene Copolymers: An Example of the Principle of Entropy–Density Driven Phase Formation in Polymers. Macromolecules, 2012, 45, 2749-2763.	2.2	37
89	Mesomorphic form of isotactic polypropylene in stereodefective polypropylene: Solid mesophase or liquid-crystal like structure. Polymer, 2012, 53, 2422-2428.	1.8	36
90	The Deformability of Polymers: The Role of Disordered Mesomorphic Crystals and Stressâ€Induced Phase Transformations. Angewandte Chemie - International Edition, 2012, 51, 1207-1211.	7.2	26

#	Article	IF	Citations
91	Crystallization Behavior of Propyleneâ'Butene Copolymers: The Trigonal Form of Isotactic Polypropylene and Form I of Isotactic Poly(1-butene). Macromolecules, 2011, 44, 540-549.	2.2	76
92	Stem Tilt in α-Form Single Crystals of Isotactic Polypropylene: A Manifestation of Conformational Constraints Set by Stereochemistry and Minimized Fold Encumbrance. Macromolecules, 2011, 44, 3916-3923.	2.2	17
93	Single site metallorganic polymerization catalysis as a method to probe the properties of polyolefins. Polymer Chemistry, 2011, 2, 2155.	1.9	34
94	Tailoring the Mechanical Properties of Isotactic Polypropylene by Blending Samples with Different Stereoregularity. Macromolecules, 2011, 44, 6026-6038.	2.2	17
95	Selective gold deposition on a nanostructured block copolymer film crystallized by epitaxy. Nano Research, 2011, 4, 241-248.	5.8	13
96	Enabling Strategies in Organic Electronics Using Ordered Block Copolymer Nanostructures. Advanced Materials, 2010, 22, 5414-5419.	11.1	53
97	Reactive blending as a tool for obtaining poly(ethylene terephthalate)-based engineering materials with tailored properties. Polymer, 2010, 51, 4340-4350.	1.8	21
98	Theoretical Investigation of Nano-Scale Organization in Blends of Semicrystalline/Semicrystalline Polymers by Small Angle X-ray Scattering. Macromolecules, 2010, 43, 9787-9801.	2.2	9
99	A New Mesophase of Isotactic Polypropylene in Copolymers of Propylene with Long Branched Comonomers. Macromolecules, 2010, 43, 8559-8569.	2.2	31
100	Structure and Morphology of Syndiotactic Poly(propene-co-1-butene)s with 1-Butene as a Rich Component. Macromolecules, 2010, 43, 1449-1454.	2.2	14
101	Helical Mesophase of Syndiotactic Polypropylene in Copolymers with 1-Hexene and 1-Octene. Macromolecules, 2010, 43, 9802-9809.	2.2	7
102	Metalloorganic Polymerization Catalysis as a Tool To Probe Crystallization Properties of Polymers: The Case of Isotactic Poly(1â€butene). Angewandte Chemie - International Edition, 2009, 48, 9871-9874.	7.2	48
103	The Harmony of Helical Macromolecules. Macromolecules, 2009, 42, 5179-5188.	2.2	5
104	Crystallization Properties and Polymorphic Behavior of Isotactic Poly(1-Butene) from Metallocene Catalysts: The Crystallization of Form I from the Melt. Macromolecules, 2009, 42, 8286-8297.	2.2	107
105	Stress-Induced Polymorphic Transformations and Mechanical Properties of Isotactic Propylene-Hexene Copolymers. Crystal Growth and Design, 2009, 9, 165-176.	1.4	44
106	Epitaxially Dominated Crystalline Morphologies of the \hat{I}^3 -Phase in Isotactic Polypropylene. Macromolecules, 2009, 42, 4758-4768.	2.2	33
107	Mechanical Properties and Elastic Behavior of Syndiotactic Propeneâ [*] Butene Copolymers. Macromolecules, 2009, 42, 4728-4738.	2.2	14
108	Theoretical investigation of (MgCl2)xpolynuclear species formed during preparation of MgCl2-supported Ziegler–Natta catalysts from solid solvates. Journal of Applied Crystallography, 2008, 41, 68-82.	1.9	15

#	Article	IF	CITATIONS
109	Nonâ€Standard Transverse Deformation of a Crystalline Lattice Induced by the Application of Tensile Stress. Macromolecular Materials and Engineering, 2008, 293, 810-814.	1.7	4
110	Time-Resolving Analysis of Cryotropic Gelation of Water/Poly(vinyl alcohol) Solutions via Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2008, 112, 816-823.	1.2	25
111	A New Crystalline Form of Syndiotactic Poly(1-butene): Crystal Structure of Form l′. Macromolecules, 2008, 41, 5301-5306.	2.2	11
112	Phase Diagram of Syndiotactic Polypropylene:  Influence of Stereoregularity and Temperature on the Polymorphic Behavior. Macromolecules, 2007, 40, 611-622.	2.2	16
113	Structure of Isotactic Propyleneâ^'Pentene Copolymers. Macromolecules, 2007, 40, 8531-8532.	2.2	56
114	Mesoscopic and Microscopic Investigation on Poly(vinyl alcohol) Hydrogels in the Presence of Sodium Decylsulfate. Journal of Physical Chemistry B, 2007, 111, 2166-2173.	1.2	15
115	Crystallization Behavior of Isotactic Propyleneâ^'Ethylene and Propyleneâ^'Butene Copolymers:  Effect of Comonomers∢i>versus∢/i>Stereodefects on Crystallization Properties of Isotactic Polypropylene. Macromolecules, 2007, 40, 6600-6616.	2.2	129
116	Polymorphic Superelasticity in Semicrystalline Polymers. Angewandte Chemie - International Edition, 2007, 46, 4325-4328.	7.2	36
117	Stereoblock Polypropylene as a Prototype Example of Elasticity via a Flip-Flop Reorientation of Crystals in a Compliant Matrix. Advanced Materials, 2007, 19, 871-874.	11.1	16
118	Formation of (MgCl ₂) _{<i>x</i>} Polynuclear Species During Preparation of Active MgCl ₂ Supported Ziegler–Natta Catalysts from Solid Solvates with Lewis Bases. Chemistry of Materials, 2007, 19, 5803-5805.	3.2	21
119	A Microscopic Insight into the Deformation Behavior of Semicrystalline Polymers: The Role of Phase Transitions. Physical Review Letters, 2006, 96, 167801.	2.9	50
120	A Study of the Microstructural and Diffusion Properties of Poly(vinyl alcohol) Cryogels Containing Surfactant Supramolecular Aggregates. Journal of Physical Chemistry B, 2006, 110, 23031-23040.	1.2	19
121	Mechanical Properties of Syndiotactic Propyleneâ°Ethylene Copolymers. Macromolecules, 2006, 39, 249-256.	2.2	22
122	Stretching Isotactic Polypropylene: From "cross-β―to Crosshatches, from γ Form to α Form. Macromolecules, 2006, 39, 7635-7647.	2.2	75
123	Structuralâ^Mechanical Phase Diagram of Isotactic Polypropylene. Journal of the American Chemical Society, 2006, 128, 11024-11025.	6.6	110
124	Crystals and Crystallinity in Polymeric Materials. Accounts of Chemical Research, 2006, 39, 314-323.	7.6	56
125	Crystal Structure of the Trigonal Form of Isotactic Polypropylene as an Example of Density-Driven Polymer Structure. Journal of the American Chemical Society, 2006, 128, 80-81.	6.6	75
126	Slow Crystallization Kinetics of Poly(vinyl alcohol) in Confined Environment during Cryotropic Gelation of Aqueous Solutions. Macromolecules, 2006, 39, 9429-9434.	2.2	40

#	Article	IF	Citations
127	The Role of Crystals in the Elasticity of Semicrystalline Thermoplastic Elastomers Chemistry of Materials, 2006, 18, 3523-3530.	3.2	25
128	Crystal Structure of Isotactic Propyleneâ' Hexene Copolymers: Â The Trigonal Form of Isotactic Polypropylene. Macromolecules, 2006, 39, 6098-6109.	2.2	87
129	Structure of syndiotactic propylene–ethylene copolymers: Effect of the presence of ethylene units on the structural transitions during plastic deformation and annealing of syndiotactic polypropylene. Polymer, 2006, 47, 2179-2188.	1.8	8
130	Structure and physical properties of syndiotactic polypropylene: A highly crystalline thermoplastic elastomer. Progress in Polymer Science, 2006, 31, 145-237.	11.8	161
131	Structure and Properties of Poly(vinyl alcohol) Hydrogels Obtained by Freeze/Thaw Techniques. Macromolecular Symposia, 2005, 222, 49-64.	0.4	47
132	From stiff plastic to elastic polypropylene: Polymorphic transformations during plastic deformation of metallocene-made isotactic polypropylene. Polymer, 2005, 46, 9461-9475.	1.8	73
133	From Entropic to Enthalpic Elasticity: Novel Thermoplastic Elastomers from Syndiotactic Propylene-Ethylene Copolymers. Advanced Materials, 2005, 17, 1503-1507.	11.1	22
134	Short Time Dynamics of Solvent Molecules and Supramolecular Organization of Poly (vinyl alcohol) Hydrogels Obtained by Freeze/Thaw Techniques. Macromolecules, 2005, 38, 6629-6639.	2.2	88
135	Influence of Chain Microstructure on the Crystallization Kinetics of Metallocene-Made Isotactic Polypropylene. Macromolecules, 2005, 38, 10080-10088.	2.2	46
136	Alternating Isotactic Ethyleneâ^'Cyclopentene Copolymer:Â A Crystalline Engineering Plastomer Including High Amounts of Structural Disorder. Journal of the American Chemical Society, 2005, 127, 2850-2851.	6.6	12
137	Polymorphic Transitions Induced by Annealing in Stretched Fibers of Syndiotactic Polypropylene. Macromolecules, 2005, 38, 4791-4798.	2.2	22
138	Crystal Structure of Alternating Isotactic Ethyleneâ^Cyclopentene Copolymer. Macromolecules, 2005, 38, 7416-7429.	2.2	14
139	Solid Mesophases in Semicrystalline Polymers: Structural Analysis by DiffractionTechniques. Advances in Polymer Science, 2005, , 1-74.	0.4	68
140	Crystallization Behavior and Mechanical Properties of Regiodefective, Highly Stereoregular Isotactic Polypropylene:Â Effect of Regiodefects versus Stereodefects and Influence of the Molecular Mass. Macromolecules, 2005, 38, 9143-9154.	2.2	80
141	Structural Organization of Poly(vinyl alcohol) Hydrogels Obtained by Freezing and Thawing Techniques:Â A SANS Study. Chemistry of Materials, 2005, 17, 1183-1189.	3.2	107
142	Crystallization properties of elastomeric polypropylene from alumina-supported tetraalkyl zirconium catalysts. Polymer, 2004, 45, 5875-5888.	1.8	24
143	Non-Helical Chain Conformations of Isotactic Polymers in the Crystalline State. Macromolecular Chemistry and Physics, 2004, 205, 390-396.	1.1	8
144	Structure and Polymorphic Behavior of High Molecular Weight Poorly Syndiotactic Polypropylene. Macromolecules, 2004, 37, 1422-1430.	2.2	24

#	Article	IF	CITATIONS
145	Structure and Properties of Elastomeric Polypropylene fromC2andC2v-Symmetric Zirconocenes. The Origin of Crystallinity and Elastic Properties in Poorly Isotactic Polypropylene. Macromolecules, 2004, 37, 6843-6855.	2.2	64
146	Structure and Physical Properties of Syndiotactic Polypropylene from Living Polymerization with Bis(phenoxyimine)-Based Titanium Catalysts. Macromolecules, 2004, 37, 9034-9047.	2.2	30
147	Mechanical Properties of Helical and Mesomorphic Forms of Syndiotactic Polypropylene at Different Temperatures. Macromolecules, 2004, 37, 7724-7735.	2.2	21
148	Comparison between Polymorphic Behaviors of Zieglerâ^Natta and Metallocene-Made Isotactic Polypropylene:Â The Role of the Distribution of Defects in the Polymer Chains. Macromolecules, 2004, 37, 1441-1454.	2.2	99
149	Disordered Chain Conformations of Poly(tetrafluoroethylene) in the High-Temperature Crystalline Form I. Macromolecules, 2004, 37, 9473-9480.	2.2	17
150	Structureâ [^] Property Correlations in Polypropylene from Metallocene Catalysts:Â Stereodefective, Regioregular Isotactic Polypropylene. Journal of the American Chemical Society, 2004, 126, 17040-17049.	6.6	201
151	X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques. Macromolecules, 2004, 37, 1921-1927.	2.2	563
152	Investigation of the Crystallinity of Freeze/Thaw Poly(vinyl alcohol) Hydrogels by Different Techniques. Macromolecules, 2004, 37, 9510-9516.	2.2	201
153	Crystal Structure of Alternating Ethyleneâ^'Norbornene Copolymer. Macromolecules, 2004, 37, 9489-9502.	2.2	16
154	Structural Transitions of the Trans-Planar Mesomorphic Form and Crystalline Form III of Syndiotactic Polypropylene in Stretched and Stress-Relaxed Fibers:  A Memory Effect. Macromolecules, 2004, 37, 1816-1824.	2.2	21
155	Chain conformations of syndiotactic poly(m-methylstyrene) in the crystalline state. Polymer, 2003, 44, 1655-1660.	1.8	1
156	Crystallization from the melt of \hat{l}_{\pm} and \hat{l}_{2} forms of syndiotactic polystyrene. Polymer, 2003, 44, 1861-1870.	1.8	56
157	Influence of the quenching temperature on the crystallization of the trans-planar mesomorphic form of syndiotactic polypropylene. Polymer, 2003, 44, 6267-6272.	1.8	26
158	New Concepts in Thermoplastic Elastomers:Â The Case of Syndiotactic Polypropylene, an Unconventional Elastomer with High Crystallinity and Large Modulus. Journal of the American Chemical Society, 2003, 125, 13143-13147.	6.6	64
159	Synthesis and Characterization of High-Molecular-Weight Syndiotactic Amorphous Polypropylene. Journal of the American Chemical Society, 2003, 125, 10913-10920.	6.6	48
160	Structure of Copolymers of Syndiotactic Polypropylene with Ethylene. Macromolecules, 2003, 36, 1850-1864.	2.2	22
161	Time-Resolved Study of the Martensitic Phase Transition in Syndiotactic Polypropylene. Macromolecules, 2003, 36, 9396-9410.	2.2	41
162	Mechanical Properties and Elastic Behavior of High-Molecular-Weight Poorly Syndiotactic Polypropylene. Macromolecules, 2003, 36, 7607-7617.	2.2	30

#	Article	IF	Citations
163	Stereoblock Polypropylene from a Metallocene Catalyst with a Hapto-Flexible Naphthylâ^'Indenyl Ligand. Macromolecules, 2003, 36, 3465-3474.	2.2	45
164	Crystalline Ethyleneâ^Norbornene Copolymers:Â Plastic Crystals from Macromolecules. Macromolecules, 2003, 36, 3789-3792.	2.2	23
165	Crystallization of the $\hat{l}\pm$ and \hat{l}^3 Forms of Isotactic Polypropylene as a Tool To Test the Degree of Segregation of Defects in the Polymer Chains. Macromolecules, 2002, 35, 3622-3629.	2.2	95
166	Structural Analysis of Copolymers of Syndiotactic Polypropylene with 13C-Enriched Ethylene. Macromolecules, 2002, 35, 1314-1318.	2.2	19
167	Crystallization of Metallocene-Made Isotactic Polypropylene: Â Disordered Modifications Intermediate between the \hat{l}_{\pm} and \hat{l}_{\pm} Forms. Macromolecules, 2002, 35, 9057-9068.	2.2	144
168	Comparison between Polymorphic Behaviors of Ziegler-Natta and Metallocene-Made Isotactic Polypropylene: The Role of the Chain Microstructure. Macromolecular Symposia, 2001, 169, 113-124.	0.4	9
169	Origin of the Elastic Behavior of Syndiotactic Polypropylene. Macromolecules, 2001, 34, 4485-4491.	2.2	78
170	The Oriented Î ³ Form of Isotactic Polypropylene. Macromolecules, 2001, 34, 4815-4826.	2.2	72
171	Crystal structures and order-disorder phenomena in polymers. Macromolecular Symposia, 2001, 175, 215-224.	0.4	1
172	Influence of the stereoregularity on the crystallization of the trans planar mesomorphic form of syndiotactic polypropylene. Polymer, 2001, 42, 9729-9734.	1.8	35
173	Solid state 13C NMR analysis of syndiotactic copolymers of propene with 1-butene. Polymer, 2000, 41, 2141-2148.	1.8	23
174	Structural and morphological aspects of some polymorphs of syndiotactic poly(p-methylstyrene). Polymer, 2000, 41, 3745-3749.	1.8	14
175	Mesomorphic Form of Syndiotactic Polypropylene. Macromolecules, 2000, 33, 6200-6204.	2.2	92
176	Structural Disorder in the α Form of Isotactic Polypropylene. Macromolecules, 2000, 33, 8764-8774.	2.2	55
177	On the form IV of syndiotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 395-402.	2.4	42
178	Polymorphism of syndiotactic polypropylene in copolymers of propylene with ethylene and 1-butene. Polymer, 1998, 39, 6219-6226.	1.8	37
179	Structural features of the mesomorphic form of syndiotactic poly(p-methylstyrene). Polymer, 1998, 39, 3523-3528.	1.8	13
180	Structural Characterization of Syndiotactic Copolymers of Propene with 1-Butene. Macromolecules, 1998, 31, 9109-9115.	2.2	44

#	Article	IF	CITATIONS
181	Chirality Constraints in Crystalâ^'Crystal Transformations:Â Isotactic Poly(1-butene) versus Syndiotactic Polypropylene. Macromolecules, 1998, 31, 9253-9257.	2.2	89
182	Equilibrium Melting Temperature of Syndiotactic Polypropylene. Macromolecules, 1998, 31, 6206-6210.	2.2	53
183	On the Form II of Syndiotactic Polypropylene. Macromolecules, 1998, 31, 7430-7435.	2.2	88
184	Mesomorphic Form (\hat{l}^2) of Nylon 6. Macromolecules, 1997, 30, 7554-7559.	2.2	77
185	Disordered Polymorphic Modifications of Form I of Syndiotactic Polypropylene. Macromolecules, 1997, 30, 4137-4146.	2.2	115
186	Kink Bands in Form II of Syndiotactic Polypropylene. Macromolecules, 1997, 30, 6586-6591.	2.2	33
187	Structure-properties relationship in spun fibers of poly(ethylene terephthalate): Comparisons between samples obtained by terephthalic acid or dimethyl terephthalate processes., 1997, 35, 889-896.		5
188	Crystal Structure of Form I of Syndiotactic Polypropylene. Macromolecules, 1996, 29, 7452-7459.	2.2	92
189	Structural changes induced by thermal treatments on emptied and filled clathrates of syndiotactic polystyrene. Macromolecular Chemistry and Physics, 1995, 196, 2795-2808.	1.1	132
190	Phase transition from a C-centered to a B-centered orthorhombic crystalline form of syndiotactic poly(propylene). Macromolecular Chemistry and Physics, 1995, 196, 4011-4024.	1.1	50
191	Conformational analysis of highly extended poly(ethylene terephthalate) chains by Monte Carlo calculations. Macromolecular Theory and Simulations, 1995, 4, 165-176.	0.6	11