
Duane E Waliser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9385097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 2017, 53, 2618-2626.	1.7	552
2	A Satellite-derived Climatology of the ITCZ. Journal of Climate, 1993, 6, 2162-2174.	1.2	446
3	Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12514-12535.	1.2	402
4	Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 2013, 40, 493-509.	1.7	368
5	Vertical structure and physical processes of the Maddenâ€Julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4718-4748.	1.2	332
6	The Influence of Coupled Sea Surface Temperatures on the Madden–Julian Oscillation: A Model Perturbation Experiment. Journals of the Atmospheric Sciences, 1999, 56, 333-358.	0.6	308
7	Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 2017, 10, 179-183.	5.4	257
8	Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophysical Research Letters, 2010, 37, .	1.5	254
9	Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. Geoscientific Model Development, 2018, 11, 2455-2474.	1.3	221
10	Global Occurrences of Extreme Precipitation and the Madden–Julian Oscillation: Observations and Predictability. Journal of Climate, 2004, 17, 4575-4589.	1.2	186
11	On The Relationship between the QBO and Tropical Deep Convection. Journal of Climate, 2003, 16, 2552-2568.	1.2	184
12	Global Analysis of Climate Change Projection Effects on Atmospheric Rivers. Geophysical Research Letters, 2018, 45, 4299-4308.	1.5	182
13	Comparison of the Highly Reflective Cloud and Outgoing Longwave Radiation Datasets for Use in Estimating Tropical Deep Convection. Journal of Climate, 1993, 6, 331-353.	1.2	173
14	Predictability of the Madden–Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE)*. Journal of Climate, 2014, 27, 4531-4543.	1.2	165
15	Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Climate Dynamics, 2014, 42, 1189-1202.	1.7	165
16	The "Year―of Tropical Convection (May 2008–April 2010): Climate Variability and Weather Highlights. Bulletin of the American Meteorological Society, 2012, 93, 1189-1218.	1.7	164
17	Vertical Moist Thermodynamic Structure and Spatial–Temporal Evolution of the MJO in AIRS Observations. Journals of the Atmospheric Sciences, 2006, 63, 2462-2485.	0.6	162
18	Cracking the MJO nut. Geophysical Research Letters, 2013, 40, 1223-1230.	1.5	154

#	Article	IF	CITATIONS
19	Impact of Atmosphere–Ocean Coupling on the Predictability of Monsoon Intraseasonal Oscillations*. Journals of the Atmospheric Sciences, 2007, 64, 157-174.	0.6	134
20	Does the Madden–Julian Oscillation Influence Wintertime Atmospheric Rivers and Snowpack in the Sierra Nevada?. Monthly Weather Review, 2012, 140, 325-342.	0.5	134
21	The 2010/2011 snow season in California's Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resources Research, 2013, 49, 6731-6743.	1.7	134
22	MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dynamics, 2017, 49, 4023-4045.	1.7	131
23	A Multiscale Modeling System: Developments, Applications, and Critical Issues. Bulletin of the American Meteorological Society, 2009, 90, 515-534.	1.7	128
24	Climate change intensification of horizontal water vapor transport in CMIP5. Geophysical Research Letters, 2015, 42, 5617-5625.	1.5	127
25	The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13777-13802.	1.2	126
26	A Statistical Extended-Range Tropical Forecast Model Based on the Slow Evolution of the Madden–Julian Oscillation. Journal of Climate, 1999, 12, 1918-1939.	1.2	125
27	Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and Beyond. Bulletin of the American Meteorological Society, 2020, 101, E608-E625.	1.7	124
28	The Influence of the Madden–Julian Oscillation on Ocean Surface Heat Fluxes and Sea Surface Temperature. Journal of Climate, 1998, 11, 1057-1072.	1.2	117
29	Prediction of the Madden–Julian Oscillation: A Review. Journal of Climate, 2018, 31, 9425-9443.	1.2	117
30	Hydrometeorological characteristics of rainâ€onâ€snow events associated with atmospheric rivers. Geophysical Research Letters, 2016, 43, 2964-2973.	1.5	108
31	Multiscale Convective Organization and the YOTC Virtual Global Field Campaign. Bulletin of the American Meteorological Society, 2012, 93, 1171-1187.	1.7	105
32	Global Floods and Water Availability Driven by Atmospheric Rivers. Geophysical Research Letters, 2017, 44, 10,387.	1.5	102
33	Climatology of Tropical Intraseasonal Convective Anomalies: 1979–2002. Journal of Climate, 2004, 17, 523-539.	1.2	97
34	Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Climate Dynamics, 2009, 33, 1099-1115.	1.7	96
35	Process-Oriented MJO Simulation Diagnostic: Moisture Sensitivity of Simulated Convection. Journal of Climate, 2014, 27, 5379-5395.	1.2	92
36	Formation and Limiting Mechanisms for Very High Sea Surface Temperature: Linking the Dynamics and the Thermodynamics. Journal of Climate, 1996, 9, 161-188.	1.2	91

#	Article	IF	CITATIONS
37	Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations. Water Resources Research, 2013, 49, 5029-5046.	1.7	90
38	Modulation of Tropical Cyclones over the Eastern Pacific by the Intraseasonal Variability Simulated in an AGCM. Journal of Climate, 2012, 25, 6524-6538.	1.2	85
39	The Madden–Julian Oscillation and Its Impact on Northern Hemisphere Weather Predictability. Monthly Weather Review, 2004, 132, 1462-1471.	0.5	84
40	Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis. Climate Dynamics, 2011, 36, 2219-2232.	1.7	84
41	Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates. Monthly Weather Review, 2011, 139, 3208-3223.	0.5	84
42	An Improved Parameterization for Simulating Arctic Cloud Amount in the CCSM3 Climate Model. Journal of Climate, 2008, 21, 5673-5687.	1.2	83
43	An Intercomparison between Reanalysis and Dropsonde Observations of the Total Water Vapor Transport in Individual Atmospheric Rivers. Journal of Hydrometeorology, 2018, 19, 321-337.	0.7	82
44	In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bulletin of the American Meteorological Society, 2019, 100, 2009-2023.	1.7	80
45	Tracking Atmospheric Rivers Globally: Spatial Distributions and Temporal Evolution of Life Cycle Characteristics. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12523-12552.	1.2	80
46	Satellite Observations for CMIP5: The Genesis of Obs4MIPs. Bulletin of the American Meteorological Society, 2014, 95, 1329-1334.	1.7	79
47	The Role of Atmospheric Rivers in Extratropical and Polar Hydroclimate. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6804-6821.	1.2	78
48	Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophysical Research Letters, 2016, 43, 2275-2282.	1.5	75
49	Assessing the Skill of an All-Season Statistical Forecast Model for the Madden–Julian Oscillation. Monthly Weather Review, 2008, 136, 1940-1956.	0.5	74
50	A Statistical Forecast Model of Tropical Intraseasonal Convective Anomalies. Journal of Climate, 2004, 17, 2078-2095.	1.2	73
51	Impact of Rossby Wave Breaking on U.S. West Coast Winter Precipitation during ENSO Events. Journal of Climate, 2013, 26, 6360-6382.	1.2	71
52	Evaluation of CMIP3 and CMIP5 Wind Stress Climatology Using Satellite Measurements and Atmospheric Reanalysis Products. Journal of Climate, 2013, 26, 5810-5826.	1.2	71
53	Ecological sensitivity: a biospheric view of climate change. Climatic Change, 2011, 107, 433-457.	1.7	69
54	Global Assessment of Atmospheric River Prediction Skill. Journal of Hydrometeorology, 2018, 19, 409-426.	0.7	69

4

#	Article	IF	CITATIONS
55	GRACE's spatial aliasing error. Geophysical Journal International, 2008, 172, 41-48.	1.0	67
56	Removing Satellite Equatorial Crossing Time Biases from the OLR and HRC Datasets. Journal of Climate, 1997, 10, 2125-2146.	1.2	66
57	Three-Dimensional Water Vapor and Cloud Variations Associated with the Madden–Julian Oscillation during Northern Hemisphere Winter. Journal of Climate, 2003, 16, 929-950.	1.2	66
58	Vertical structure and physical processes of the Maddenâ€Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4690-4717.	1.2	63
59	Vertical Moist Thermodynamic Structure of the Madden–Julian Oscillation in Atmospheric Infrared Sounder Retrievals: An Update and a Comparison to ECMWF Interim Re-Analysis. Monthly Weather Review, 2010, 138, 4576-4582.	0.5	61
60	A Unified Moisture Mode Framework for Seasonality of the Madden–Julian Oscillation. Journal of Climate, 2018, 31, 4215-4224.	1.2	61
61	The Madden–Julian Oscillation in CCSM4. Journal of Climate, 2011, 24, 6261-6282.	1.2	59
62	Vertical structure and physical processes of the Maddenâ€Julian oscillation: Synthesis and summary. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4671-4689.	1.2	58
63	Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dynamics, 2013, 40, 465-474.	1.7	57
64	Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment. Climate Dynamics, 2015, 45, 2123-2135.	1.7	57
65	Cloud Feedback Key to Marine Heatwave off Baja California. Geophysical Research Letters, 2018, 45, 4345-4352.	1.5	57
66	Global Climate Model Ensemble Approaches for Future Projections of Atmospheric Rivers. Earth's Future, 2019, 7, 1136-1151.	2.4	56
67	Atmospheric rivers in 20Âyear weather and climate simulations: A multimodel, global evaluation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5556-5581.	1.2	54
68	Global evaluation of atmospheric river subseasonal prediction skill. Climate Dynamics, 2019, 52, 3039-3060.	1.7	52
69	The Experimental MJO Prediction Project. Bulletin of the American Meteorological Society, 2006, 87, 425-431.	1.7	50
70	Forced and Free Intraseasonal Variability over the South Asian Monsoon Region Simulated by 10 AGCMs. Journal of Climate, 2002, 15, 2862-2880.	1.2	48
71	Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Communications Earth & Environment, 2021, 2, .	2.6	47
72	Model performance metrics and process diagnostics for boreal summer intraseasonal variability. Climate Dynamics, 2017, 48, 1661-1683.	1.7	46

#	Article	IF	CITATIONS
73	Tropical mid-tropospheric CO ₂ variability driven by the Madden–Julian oscillation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19171-19175.	3.3	45
74	Advances in the Application and Utility of Subseasonal-to-Seasonal Predictions. Bulletin of the American Meteorological Society, 2022, 103, E1448-E1472.	1.7	45
75	Climate Model Evaluation in the Presence of Observational Uncertainty: Precipitation Indices over the Contiguous United States. Journal of Hydrometeorology, 2019, 20, 1339-1357.	0.7	43
76	Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Advances in Atmospheric Sciences, 2011, 28, 1077-1098.	1.9	41
77	Predictability Studies of the Intraseasonal Oscillation with the ECHAM5 GCM. Journals of the Atmospheric Sciences, 2005, 62, 3320-3336.	0.6	40
78	The Maintenance of the Relative Humidity of the Subtropical Free Troposphere. Journal of Climate, 2010, 23, 390-403.	1.2	40
79	An estimate of the surface shortwave cloud forcing over the western Pacific during TOGA COARE. Geophysical Research Letters, 1996, 23, 519-522.	1.5	38
80	Classification of atmospheric river events on the U.S. West Coast using a trajectory model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3007-3028.	1.2	38
81	Ridging Associated with Drought across the Western and Southwestern United States: Characteristics, Trends, and Predictability Sources. Journal of Climate, 2020, 33, 2485-2508.	1.2	38
82	The MJO and global warming: a study in CCSM4. Climate Dynamics, 2014, 42, 2019-2031.	1.7	37
83	Seasonality and Meridional Propagation of the MJO. Journal of Climate, 2006, 19, 1901-1921.	1.2	36
84	Evaluation of the Surface Climatology over the Conterminous United States in the North American Regional Climate Change Assessment Program Hindcast Experiment Using a Regional Climate Model Evaluation System. Journal of Climate, 2013, 26, 5698-5715.	1.2	36
85	Experimental Subseasonalâ€toâ€Seasonal (S2S) Forecasting of Atmospheric Rivers Over the Western United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11242-11265.	1.2	36
86	Quantifying the processes controlling intraseasonal mixedâ€layer temperature variability in the tropical <scp>I</scp> ndian <scp>O</scp> cean. Journal of Geophysical Research: Oceans, 2015, 120, 692-715.	1.0	33
87	Interannual Sea Surface Temperature Variability and the Predictability of Tropical Intraseasonal Variability. Journals of the Atmospheric Sciences, 2001, 58, 2596-2615.	0.6	32
88	On the Annual Cycle, Variability, and Correlations of Oceanic Low-Topped Clouds with Large-Scale Circulation Using Aqua MODIS and ERA-Interim. Journal of Climate, 2012, 25, 6152-6174.	1.2	32
89	Aquarius surface salinity and the Maddenâ€Julian Oscillation: The role of salinity in surface layer density and potential energy. Geophysical Research Letters, 2014, 41, 2858-2869.	1.5	31
90	Tropical Atlantic dust and smoke aerosol variations related to the Maddenâ€Julian Oscillation in MODIS and MISR observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4947-4963.	1.2	30

#	Article	IF	CITATIONS
91	Implications of Detection Methods on Characterizing Atmospheric River Contribution to Seasonal Snowfall Across Sierra Nevada, USA. Geophysical Research Letters, 2017, 44, 10,445.	1.5	30
92	Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses, and Forecasts: A Case Study during 1998/99 Winter. Journal of Climate, 2009, 22, 6001-6020.	1.2	29
93	Two dominant subseasonal variability modes of the eastern Pacific ITCZ. Geophysical Research Letters, 2009, 36, .	1.5	29
94	Modulation of the Convectively Coupled Kelvin Waves over South America and the Tropical Atlantic Ocean in Association with the Madden–Julian Oscillation. Journals of the Atmospheric Sciences, 2014, 71, 1371-1388.	0.6	29
95	A Systematic Relationship between the Representations of Convectively Coupled Equatorial Wave Activity and the Madden–Julian Oscillation in Climate Model Simulations. Journal of Climate, 2015, 28, 1881-1904.	1.2	29
96	Contemporary GCM Fidelity in Representing the Diurnal Cycle of Precipitation Over the Maritime Continent. Journal of Geophysical Research D: Atmospheres, 2019, 124, 747-769.	1.2	29
97	Sensitivity of Seasonal Snowfall Attribution to Atmospheric Rivers and Their Reanalysisâ€Based Detection. Geophysical Research Letters, 2019, 46, 794-803.	1.5	28
98	Atmospheric Rivers and Precipitation in the Middle East and North Africa (MENA). Water (Switzerland), 2020, 12, 2863.	1.2	28
99	Evolving Obs4MIPs to Support Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Bulletin of the American Meteorological Society, 2015, 96, ES131-ES133.	1.7	27
100	Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets. Earth Science Informatics, 2015, 8, 663-675.	1.6	27
101	Boundary Layer and Cloud Structure Controls on Tropical Low Cloud Cover Using A-Train Satellite Data and ECMWF Analyses. Journal of Climate, 2011, 24, 194-215.	1.2	26
102	Modulation of tropical ocean surface chlorophyll by the Madden–Julian Oscillation. Climate Dynamics, 2013, 40, 39-58.	1.7	26
103	Vertical structure and physical processes of the Maddenâ€Julian Oscillation: Biases and uncertainties at short range. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4749-4763.	1.2	26
104	Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using Aâ€Train observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1621-1636.	1.2	26
105	Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003–2013. Journal of Geophysical Research: Solid Earth, 2015, 120, 3617-3627.	1.4	25
106	New Approaches to Understanding, Simulating, and Forecasting the Madden–Julian Oscillation. Bulletin of the American Meteorological Society, 2008, 89, 1917-1920.	1.7	24
107	Representation of tropical subseasonal variability of precipitation in global reanalyses. Climate Dynamics, 2014, 43, 517-534.	1.7	23
108	Precipitation characteristics related to atmospheric rivers in East Asia. International Journal of Climatology, 2021, 41, E2244.	1.5	23

#	Article	IF	CITATIONS
109	Statistical Relationship between Atmospheric Rivers and Extratropical Cyclones and Anticyclones. Journal of Climate, 2020, 33, 7817-7834.	1.2	23
110	Evaluation of global land-to-ocean fresh water discharge and evapotranspiration using space-based observations. Journal of Hydrology, 2009, 373, 508-515.	2.3	22
111	Tropical Intraseasonal Variability in the MRI-20km60L AGCM*. Journal of Climate, 2009, 22, 2006-2022.	1.2	22
112	Evaluating the impact of orbital sampling on satellite–climate model comparisons. Journal of Geophysical Research D: Atmospheres, 2013, 118, 355-369.	1.2	22
113	Surface Temperature Probability Distributions in the NARCCAP Hindcast Experiment: Evaluation Methodology, Metrics, and Results. Journal of Climate, 2015, 28, 978-997.	1.2	22
114	Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASAâ€Unified WRF. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7371-7384.	1.2	22
115	Precursor Environmental Conditions Associated with the Termination of Madden–Julian Oscillation Events. Journals of the Atmospheric Sciences, 2015, 72, 1908-1931.	0.6	20
116	Atmospheric River Lifecycle Responses to the Maddenâ€Julian Oscillation. Geophysical Research Letters, 2021, 48, e2020GL090983.	1.5	20
117	Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models. Climate Dynamics, 2012, 39, 617-636.	1.7	19
118	Accelerated mass loss from Greenland ice sheet: Links to atmospheric circulation in the North Atlantic. Global and Planetary Change, 2015, 128, 61-71.	1.6	19
119	Evaluation of large-scale meteorological patterns associated with temperature extremes in the NARCCAP regional climate model simulations. Climate Dynamics, 2015, 45, 3257-3274.	1.7	18
120	The Effect of Statistical Downscaling on the Weighting of Multi-Model Ensembles of Precipitation. Climate, 2020, 8, 138.	1.2	18
121	Simulations of the Eastern North Pacific Intraseasonal Variability in CMIP5 GCMs. Journal of Climate, 2013, 26, 3489-3510.	1.2	17
122	Evaluating MJO event initiation and decay in the skeleton model using an RMMâ€like index. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,486.	1.2	17
123	A Damping Effect of the Maritime Continent for the Maddenâ€Julian Oscillation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13693-13713.	1.2	17
124	Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6. Geoscientific Model Development, 2020, 13, 2945-2958.	1.3	17
125	Arc: A source of multisensor satellite data for polar science. Eos, 1992, 73, 65-65.	0.1	16
126	Regional Climate Model Evaluation System powered by Apache Open Climate Workbench v1.3.0: an enabling tool for facilitating regional climate studies. Geoscientific Model Development, 2018, 11, 4435-4449.	1.3	16

#	Article	IF	CITATIONS
127	Extending the Atmospheric River Concept to Aerosols: Climate and Air Quality Impacts. Geophysical Research Letters, 2021, 48, e2020GL091827.	1.5	16
128	Satellite OLR and microwave data as a proxy for summer rainfall over sub-equatorial Africa and adjacent oceans. International Journal of Climatology, 1993, 13, 257-269.	1.5	14
129	Eastern Pacific Intraseasonal Variability: A Predictability Perspective. Journal of Climate, 2014, 27, 8869-8883.	1.2	14
130	A Climatology of Atmospheric Rivers and Associated Precipitation for the Seven U.S. National Climate Assessment Regions. Journal of Hydrometeorology, 2020, 21, 2439-2456.	0.7	14
131	A Momentum Budget Analysis of Westerly Wind Events Associated with the Madden–Julian Oscillation during DYNAMO. Journals of the Atmospheric Sciences, 2015, 72, 3780-3799.	0.6	13
132	Development of a Model Performance Metric and Its Application to Assess Summer Precipitation over the U.S. Great Plains in Downscaled Climate Simulations. Journal of Hydrometeorology, 2017, 18, 2781-2799.	0.7	12
133	Subseasonalâ€ŧoâ€5easonal Hindcast Skill Assessment of Ridging Events Related to Drought Over the Western United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033655.	1.2	12
134	Cloud computing and virtualization within the regional climate model and evaluation system. Earth Science Informatics, 2014, 7, 1-12.	1.6	11
135	CYGNSS Ocean Surface Wind Validation in the Tropics. Journal of Atmospheric and Oceanic Technology, 2021, 38, 711-724.	0.5	11
136	A multimodel evaluation of the water vapor budget in atmospheric rivers. Annals of the New York Academy of Sciences, 2020, 1472, 139-154.	1.8	11
137	Sensitivity of CONUS Summer Rainfall to the Selection of Cumulus Parameterization Schemes in NU-WRF Seasonal Simulations. Journal of Hydrometeorology, 2017, 18, 1689-1706.	0.7	11
138	Progress and direction in tropical convection research: YOTC International Science Symposium. Bulletin of the American Meteorological Society, 2012, 93, ES65-ES69.	1.7	10
139	Sharing Satellite Observations with the Climate-Modeling Community: Software and Architecture. IEEE Software, 2012, 29, 73-81.	2.1	10
140	Genesis Locations of the Costliest Atmospheric Rivers Impacting the Western United States. Geophysical Research Letters, 2021, 48, e2021GL093947.	1.5	10
141	Coarse-Resolution Models Only Partly Cloudy. Science, 2008, 320, 612-613.	6.0	9
142	Evidence of the recent decade change in global fresh water discharge and evapotranspiration revealed by reanalysis and satellite observations. Asia-Pacific Journal of Atmospheric Sciences, 2012, 48, 153-158.	1.3	8
143	Evaluation of cool season precipitation event characteristics over the Northeast US in a suite of downscaled climate model hindcasts. Climate Dynamics, 2018, 50, 3711-3727.	1.7	8
144	Intraseasonal atmospheric forcing effects on the mean state of ocean surface chlorophyll. Journal of Geophysical Research: Oceans, 2013, 118, 184-196.	1.0	7

#	Article	IF	CITATIONS
145	Studying Earth in the New Millennium: NASA Jet Propulsion Laboratory's Contributions to Earth Science and Applications Space Agencies. IEEE Geoscience and Remote Sensing Magazine, 2016, 4, 26-39.	4.9	7
146	Convective Momentum Transport Associated with the Madden–Julian Oscillation Based on a Reanalysis Dataset. Journal of Climate, 2015, 28, 5763-5782.	1.2	6
147	Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation. Climate Dynamics, 2018, 50, 1485-1494.	1.7	6
148	Evaluating the Preconditions of Two Remote Sensing SWE Retrieval Algorithms over the US. Remote Sensing, 2020, 12, 2021.	1.8	5
149	Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities. Atmospheric Chemistry and Physics, 2022, 22, 8175-8195.	1.9	5
150	Modulation of Marine Low Clouds Associated with the Tropical Intraseasonal Variability over the Eastern Pacific. Journal of Climate, 2014, 27, 5560-5574.	1.2	4
151	Influence of the Maddenâ€Julian oscillation on the Indian Ocean crossâ€equatorial heat transport. Geophysical Research Letters, 2014, 41, 7314-7322.	1.5	4
152	Using joint probability distribution functions to evaluate simulations of precipitation, cloud fraction and insolation in the North America Regional Climate Change Assessment Program (NARCCAP). Climate Dynamics, 2015, 45, 309-323.	1.7	4
153	Evaluation of CMIP5 ability to reproduce twentieth century regional trends in surface air temperature and precipitation over CONUS. Climate Dynamics, 2019, 53, 5459-5480.	1.7	4
154	An Extreme Precipitation Categorization Scheme and its Observational Uncertainty over the Continental United States. Journal of Hydrometeorology, 2019, 20, 1029-1052.	0.7	4
155	A 30-Yr Climatology of Meteorological Conditions Associated with Lightning Days in the Interior Western United States. Journal of Climate, 2020, 33, 3771-3785.	1.2	4
156	The impacts of precipitating cloud radiative effects on ocean surface evaporation, precipitation, and ocean salinity in coupled GCM simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9474-9491.	1.2	3
157	Atmospheric River Modeling: Forecasts, Climate Simulations, and Climate Projections. , 2020, , 179-199.		3
158	The Observed Water Vapor Budget in an Atmospheric River over the Northeast Pacific. Journal of Hydrometeorology, 2020, 21, 2655-2673.	0.7	3
159	The Future of Atmospheric River Research and Applications. , 2020, , 219-247.		3
160	Modeling Monsoon Intraseasonal Variability: From Theory to Operational Forecasting. Bulletin of the American Meteorological Society, 2011, 92, ES32-ES35.	1.7	2
161	Forecasts of Opportunity: Opening Windows of Skill, Subseasonal and Beyond. Bulletin of the American Meteorological Society, 2020, 101, 597-601.	1.7	2
162	A Systems Perspective on the Environmental Prediction Enterprise. Bulletin of the American Meteorological Society, 2020, 101, E2047-E2057.	1.7	1

#	Article	IF	CITATIONS
163	Vertical Structure and Diabatic Processes of the Madden-Julian Oscillation. World Scientific Series on Asia-Pacific Weather and Climate, 2017, , 161-172.	0.2	0