Zhi-Yong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9384772/publications.pdf

Version: 2024-02-01

14655 13379 23,043 129 66 130 citations h-index g-index papers 139 139 139 13847 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	15N Metabolic Labeling Quantification Workflow in Arabidopsis Using Protein Prospector. Frontiers in Plant Science, 2022, 13, 832562.	3.6	10
2	The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Current Biology, 2022, 32, 2454-2466.e7.	3.9	30
3	Deconvoluting signals downstream of growth and immune receptor kinases by phosphocodes of the BSU1 family phosphatases. Nature Plants, 2022, 8, 646-655.	9.3	10
4	Quantitative Proteomics Reveals that GmENO2 Proteins Are Involved in Response to Phosphate Starvation in the Leaves of Glycine max L International Journal of Molecular Sciences, 2021, 22, 920.	4.1	9
5	Arabidopsis ACINUS is O-glycosylated and regulates transcription and alternative splicing of regulators of reproductive transitions. Nature Communications, 2021, 12, 945.	12.8	36
6	Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. Plant Physiology, 2021, 186, 534-548.	4.8	14
7	Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage (Brassica) Tj ETQq1 1 0	.784314 r 2.3	gBT ₁ /Overlo <mark>ck</mark>
8	Activation of TOR signaling by diverse nitrogen signals in plants. Developmental Cell, 2021, 56, 1213-1214.	7.0	9
9	Sugar inhibits brassinosteroid signaling by enhancing BIN2 phosphorylation of BZR1. PLoS Genetics, 2021, 17, e1009540.	3.5	18
10	A spatiotemporal molecular switch governs plant asymmetric cell division. Nature Plants, 2021, 7, 667-680.	9.3	27
11	Isotopically Dimethyl Labeling-Based Quantitative Proteomic Analysis of Phosphoproteomes of Soybean Cultivars. Biomolecules, 2021, 11, 1218.	4.0	5
12	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
13	Cyclophilin OsCYP20â€⊋ with a novel variant integrates defense and cell elongation for chilling response in rice. New Phytologist, 2020, 225, 2453-2467.	7.3	19
14	Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachys edulis) seedlings. Planta, 2020, 252, 27.	3.2	9
15	First plant cell atlas workshop report. Plant Direct, 2020, 4, e00271.	1.9	3
16	TRIPP Is a Plant-Specific Component of the Arabidopsis TRAPPII Membrane Trafficking Complex with Important Roles in Plant Development. Plant Cell, 2020, 32, 2424-2443.	6.6	24
17	PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Current Biology, 2020, 30, 1579-1588.e6.	3.9	58
18	PSBR1, encoding a mitochondrial protein, is regulated by brassinosteroid in moso bamboo (Phyllostachys edulis). Plant Molecular Biology, 2020, 103, 63-74.	3.9	5

#	Article	IF	CITATIONS
19	AtOFPs regulate cell elongation by modulating microtubule orientation via direct interaction with TONNEAU2. Plant Science, 2020, 292, 110405.	3.6	13
20	Light and plant development: the discovery of phototropins by Winslow R. Briggs (1928–2019). Plant Signaling and Behavior, 2019, 14, e1652521.	2.4	3
21	Genome-wide transcriptional profiling for elucidating the effects of brassinosteroids on Glycine max during early vegetative development. Scientific Reports, 2019, 9, 16085.	3.3	12
22	Mutual Regulation of Receptor-Like Kinase SIT1 and B'κ-PP2A Shapes the Early Response of Rice to Salt Stress. Plant Cell, 2019, 31, 2131-2151.	6.6	21
23	GmBZL3 acts as a major BR signaling regulator through crosstalk with multiple pathways in Glycine max. BMC Plant Biology, 2019, 19, 86.	3.6	10
24	Plant U-Box40 Mediates Degradation of the Brassinosteroid-Responsive Transcription Factor BZR1 in Arabidopsis Roots. Plant Cell, 2019, 31, 791-808.	6.6	55
25	Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 2018, 9, 1063.	12.8	169
26	Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1536-E1543.	7.1	101
27	PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nature Communications, 2017, 8, 15236.	12.8	132
28	The F-box Protein KIB1 Mediates Brassinosteroid-Induced Inactivation and Degradation of GSK3-like Kinases in Arabidopsis. Molecular Cell, 2017, 66, 648-657.e4.	9.7	107
29	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	7.1	233
30	Immunopurification and Mass Spectrometry Identifies Protein Phosphatase 2A (PP2A) and BIN2/GSK3 as Regulators of AKS Transcription Factors in Arabidopsis. Molecular Plant, 2017, 10, 345-348.	8.3	13
31	Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile. Protoplasma, 2017, 254, 1317-1322.	2.1	5
32	TOC1–PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nature Communications, 2016, 7, 13692.	12.8	163
33	Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nature Genetics, 2016, 48, 687-693.	21.4	193
34	N-Glycopeptide Profiling in Arabidopsis Inflorescence. Molecular and Cellular Proteomics, 2016, 15, 2048-2054.	3.8	41
35	ANAC005 is a membraneâ€associated transcription factor and regulates vascular development in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2016, 58, 442-451.	8.5	15
36	TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis. Current Biology, 2016, 26, 1854-1860.	3.9	201

3

#	Article	lF	Citations
37	The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Journal of Genetics and Genomics, 2016, 43, 555-563.	3.9	75
38	Rice <i>ASR1</i> and <i>ASR5</i> are complementary transcription factors regulating aluminium responsive genes. Plant, Cell and Environment, 2016, 39, 645-651.	5.7	75
39	Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma, 2016, 253, 3-14.	2.1	45
40	Immunophilin-like FKBP42/TWISTED DWARF1 Interacts with the Receptor Kinase BRI1 to Regulate Brassinosteroid Signaling in Arabidopsis. Molecular Plant, 2016, 9, 593-600.	8.3	31
41	The Brassinosteroid-Activated BRI1 Receptor Kinase Is Switched off by Dephosphorylation Mediated by Cytoplasm-Localized PP2A B′ Subunits. Molecular Plant, 2016, 9, 148-157.	8.3	64
42	Information Integration and Communication in Plant Growth Regulation. Cell, 2016, 164, 1257-1268.	28.9	217
43	Oligomerization between BSU1 Family Members Potentiates Brassinosteroid Signaling in Arabidopsis. Molecular Plant, 2016, 9, 178-181.	8.3	27
44	Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a <scp>MYB</scp> domain protein. Plant Journal, 2015, 82, 570-581.	5.7	132
45	Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots. Current Biology, 2015, 25, 1031-1042.	3.9	230
46	The molecular circuit of steroid signalling in plants. Essays in Biochemistry, 2015, 58, 71-82.	4.7	6
47	Rice Arsenal Against Aluminum Toxicity. Signaling and Communication in Plants, 2015, , 155-168.	0.7	1
48	Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. ELife, $2014, 3, .$	6.0	464
49	The bHLH Transcription Factor HBI1 Mediates the Trade-Off between Growth and Pathogen-Associated Molecular Pattern–Triggered Immunity in <i>Arabidopsis</i>	6.6	191
50	DWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice. PLoS Genetics, 2014, 10, e1004154.	3.5	54
51	A Brassinosteroid-Signaling Kinase Interacts with Multiple Receptor-Like Kinases in Arabidopsis. Molecular Plant, 2014, 7, 441-444.	8.3	40
52	New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1 Promoter and Other Aluminum-Responsive Genes. Molecular Plant, 2014, 7, 709-721.	8.3	117
53	The brassinosteroid signaling network â€" a paradigm of signal integration. Current Opinion in Plant Biology, 2014, 21, 147-153.	7.1	135
54	Blue Light-Induced Proteomic Changes in Etiolated <i>Arabidopsis</i> Seedlings. Journal of Proteome Research, 2014, 13, 2524-2533.	3.7	35

#	Article	IF	CITATIONS
55	A mutually assured destruction mechanism attenuates light signaling in <i>Arabidopsis</i> . Science, 2014, 344, 1160-1164.	12.6	220
56	At the Intersection of Plant Growth and Immunity. Cell Host and Microbe, 2014, 15, 400-402.	11.0	44
57	TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nature Communications, 2014, 5, 4140.	12.8	113
58	Genetic Linkage Map Construction and QTL Mapping of Salt Tolerance Traits in Zoysiagrass (Zoysia) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
59	Identification of BZR1-interacting Proteins as Potential Components of the Brassinosteroid Signaling Pathway in Arabidopsis Through Tandem Affinity Purification. Molecular and Cellular Proteomics, 2013, 12, 3653-3665.	3.8	57
60	Structural and Functional Characterization of Arabidopsis GSK3-like Kinase AtSK12. Molecules and Cells, 2013, 36, 564-570.	2.6	20
61	Brassinosteroid Regulates Seed Size and Shape in Arabidopsis. Plant Physiology, 2013, 162, 1965-1977.	4.8	204
62	A Triple Helix-Loop-Helix/Basic Helix-Loop-Helix Cascade Controls Cell Elongation Downstream of Multiple Hormonal and Environmental Signaling Pathways in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2013, 24, 4917-4929.	6.6	197
63	Brassinosteroid signalling. Development (Cambridge), 2013, 140, 1615-1620.	2.5	283
64	Identification of Arabidopsis BAK1-Associating Receptor-Like Kinase 1 (BARK1) and Characterization of its Gene Expression and Brassinosteroid-Regulated Root Phenotypes. Plant and Cell Physiology, 2013, 54, 1620-1634.	3.1	29
65	Multisite Light-Induced Phosphorylation of the Transcription Factor PIF3 Is Necessary for Both Its Rapid Degradation and Concomitant Negative Feedback Modulation of Photoreceptor phyB Levels in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 2679-2698.	6.6	124
66	Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9171-9176.	7.1	104
67	BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 2013, 6, 456-469.	8.3	101
68	<i>Arabidopsis</i> MICROTUBULE DESTABILIZING PROTEIN40 Is Involved in Brassinosteroid Regulation of Hypocotyl Elongation. Plant Cell, 2012, 24, 4012-4025.	6.6	109
69	BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Molecular Plant, 2012, 5, 591-600.	8.3	131
70	CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis Â. Plant Physiology, 2012, 158, 1079-1088.	4.8	145
71	Interactions between HLH and bHLH Factors Modulate Light-Regulated Plant Development. Molecular Plant, 2012, 5, 688-697.	8.3	146
72	Brassinosteroids regulate organ boundary formation in the shoot apical meristem of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21152-21157.	7.1	156

#	Article	IF	CITATIONS
73	Brassinosteroids modulate plant immunity at multiple levels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7-8.	7.1	103
74	Brassinosteroid Signaling Network and Regulation of Photomorphogenesis. Annual Review of Genetics, 2012, 46, 701-724.	7.6	410
75	Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 2012, 14, 802-809.	10.3	718
76	Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 2012, 14, 810-817.	10.3	549
77	Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 2012, 482, 419-422.	27.8	456
78	Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Cell Research, 2012, 22, 1304-1308.	12.0	78
79	Brassinosteroid action in flowering plants: a Darwinian perspective. Journal of Experimental Botany, 2012, 63, 3511-3522.	4.8	63
80	Rapid auxinâ€mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth. Plant Biology, 2012, 14, 420-427.	3.8	17
81	Structural insight into brassinosteroid perception by BRI1. Nature, 2011, 474, 472-476.	27.8	350
82	The CDG1 Kinase Mediates Brassinosteroid Signal Transduction from BRI1 Receptor Kinase to BSU1 Phosphatase and GSK3-like Kinase BIN2. Molecular Cell, 2011, 43, 561-571.	9.7	310
83	PP2A activates brassinosteroid-responsive geneÂexpression and plant growth by dephosphorylatingÂBZR1. Nature Cell Biology, 2011, 13, 124-131.	10.3	438
84	Identification of O-linked \hat{l}^2 -d-N-acetylglucosamine-Modified Proteins from Arabidopsis. Methods in Molecular Biology, 2011, 876, 33-45.	0.9	11
85	Quantitative Analysis of Protein Phosphorylation Using Two-Dimensional Difference Gel Electrophoresis. Methods in Molecular Biology, 2011, 876, 47-66.	0.9	7
86	Genome-Wide Identification of Transcription Factor-Binding Sites in Plants Using Chromatin Immunoprecipitation Followed by Microarray (ChIP-chip) or Sequencing (ChIP-seq). Methods in Molecular Biology, 2011, 876, 173-188.	0.9	55
87	Proteomics Analysis Reveals Post-Translational Mechanisms for Cold-Induced Metabolic Changes in Arabidopsis. Molecular Plant, 2011, 4, 361-374.	8.3	47
88	Proteomic Analysis of Brassica Stigmatic Proteins Following the Self-incompatibility Reaction Reveals a Role for Microtubule Dynamics During Pollen Responses. Molecular and Cellular Proteomics, 2011, 10, M111.011338.	3.8	56
89	Proteomics shed light on the brassinosteroid signaling mechanisms. Current Opinion in Plant Biology, 2010, 13, 27-33.	7.1	60
90	From receptors to responses. Current Opinion in Plant Biology, 2010, 13, 485-488.	7.1	2

#	Article	IF	Citations
91	Proteomic Study Identifies Proteins Involved in Brassinosteroid Regulation of Rice Growth. Journal of Integrative Plant Biology, 2010, 52, 1075-1085.	8.5	28
92	Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and <i>Arabidopsis </i> A Â Â. Plant Cell, 2010, 21, 3767-3780.	6.6	425
93	Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: A quantitative proteomic analysis. Plant Signaling and Behavior, 2010, 5, 509-517.	2.4	22
94	Brassinosteroid Signal Transduction from Receptor Kinases to Transcription Factors. Annual Review of Plant Biology, 2010, 61, 681-704.	18.7	575
95	Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 2010, 19, 765-777.	7.0	790
96	Integration of Light- and Brassinosteroid-Signaling Pathways by a GATA Transcription Factor in Arabidopsis. Developmental Cell, 2010, 19, 872-883.	7.0	219
97	Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Research, 2009, 37, D975-D982.	14.5	52
98	<i>OsGSR1</i> is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant Journal, 2009, 57, 498-510.	5.7	204
99	Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 2009, 11, 1254-1260.	10.3	571
100	Binding Assays for Brassinosteroid Receptors. Methods in Molecular Biology, 2009, 495, 81-88.	0.9	2
101	BSKs Mediate Signal Transduction from the Receptor Kinase BRI1 in <i>Arabidopsis</i> . Science, 2008, 321, 557-560.	12.6	579
102	Prefoldin 6 is required for normal microtubule dynamics and organization in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18064-18069.	7.1	56
103	Chemical Genetic Dissection of Brassinosteroid–Ethylene Interaction. Molecular Plant, 2008, 1, 368-379.	8.3	61
104	Proteomics Studies of Brassinosteroid Signal Transduction Using Prefractionation and Two-dimensional DIGE. Molecular and Cellular Proteomics, 2008, 7, 728-738.	3.8	126
105	Rice ROOT ARCHITECTURE ASSOCIATED1 Binds the Proteasome Subunit RPT4 and Is Degraded in a D-Box and Proteasome-Dependent Manner Â. Plant Physiology, 2008, 148, 843-855.	4.8	25
106	A Proteomics Study of Brassinosteroid Response in Arabidopsis. Molecular and Cellular Proteomics, 2007, 6, 2058-2071.	3.8	147
107	Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13839-13844.	7.1	362
108	An Essential Role for 14-3-3 Proteins in Brassinosteroid Signal Transduction in Arabidopsis. Developmental Cell, 2007, 13, 177-189.	7.0	427

#	Article	IF	Citations
109	Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant Journal, 2007, 51, 512-525.	5.7	106
110	Multiple mechanisms modulate brassinosteroid signaling. Current Opinion in Plant Biology, 2007, 10, 436-441.	7.1	122
111	The brassinosteroid signal transduction pathway. Cell Research, 2006, 16, 427-434.	12.0	73
112	Genetic transformation of green-colored cotton. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 439-444.	2.1	24
113	Transcriptome Profiling, Molecular Biological, and Physiological Studies Reveal a Major Role for Ethylene in Cotton Fiber Cell Elongation. Plant Cell, 2006, 18, 651-664.	6.6	518
114	BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science, 2005, 307, 1634-1638.	12.6	739
115	Circadian Rhythms of Ethylene Emission in Arabidopsis. Plant Physiology, 2004, 136, 3751-3761.	4.8	147
116	Brassinosteroid signal transduction – choices of signals and receptors. Trends in Plant Science, 2004, 9, 91-96.	8.8	109
117	The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10185-10190.	7.1	596
118	Circadian Rhythms Confer a Higher Level of Fitness to Arabidopsis Plants. Plant Physiology, 2002, 129, 576-584.	4.8	338
119	BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation. Cell, 2002, 109, 181-191.	28.9	1,124
120	Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2002, 2, 505-513.	7.0	967
121	BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410, 380-383.	27.8	743
122	Recent Advances in Molecular Genetic Studies of the Functions of Brassinolide, A Steroid Hormone in Plants. Recent Advances in Phytochemistry, 2000, , 409-431.	0.5	3
123	Activation Tagging in Arabidopsis. Plant Physiology, 2000, 122, 1003-1014.	4.8	896
124	Perception of Brassinosteroids by the Extracellular Domain of the Receptor Kinase BRI1. Science, 2000, 288, 2360-2363.	12.6	439
125	Constitutive Expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own Expression. Cell, 1998, 93, 1207-1217.	28.9	952
126	Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11020-11025.	7.1	227

ZHI-YONG WANG

#	Article	IF	CITATIONS
127	A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene Plant Cell, 1997, 9, 491-507.	6.6	404
128	A Myb-Related Transcription Factor Is Involved in the Phytochrome Regulation of an Arabidopsis Lhcb Gene. Plant Cell, 1997, 9, 491.	6.6	79
129	126Gln is the residue of human IL-2 binding to IL-2R \hat{I}^3 subunit. Science in China Series C: Life Sciences, 1997, 40, 159-168.	1.3	0