Zhi-Yong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9384772/publications.pdf

Version: 2024-02-01

14655 13379 23,043 129 66 130 citations h-index g-index papers 139 139 139 13847 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation. Cell, 2002, 109, 181-191.	28.9	1,124
2	Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2002, 2, 505-513.	7.0	967
3	Constitutive Expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own Expression. Cell, 1998, 93, 1207-1217.	28.9	952
4	Activation Tagging in Arabidopsis. Plant Physiology, 2000, 122, 1003-1014.	4.8	896
5	Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 2010, 19, 765-777.	7.0	790
6	BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410, 380-383.	27.8	743
7	BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science, 2005, 307, 1634-1638.	12.6	739
8	Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 2012, 14, 802-809.	10.3	718
9	The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10185-10190.	7.1	596
10	BSKs Mediate Signal Transduction from the Receptor Kinase BRI1 in <i>Arabidopsis</i> . Science, 2008, 321, 557-560.	12.6	579
11	Brassinosteroid Signal Transduction from Receptor Kinases to Transcription Factors. Annual Review of Plant Biology, 2010, 61, 681-704.	18.7	575
12	Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 2009, 11, 1254-1260.	10.3	571
13	Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 2012, 14, 810-817.	10.3	549
14	Transcriptome Profiling, Molecular Biological, and Physiological Studies Reveal a Major Role for Ethylene in Cotton Fiber Cell Elongation. Plant Cell, 2006, 18, 651-664.	6.6	518
15	Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. ELife, 2014, 3, .	6.0	464
16	Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 2012, 482, 419-422.	27.8	456
17	Perception of Brassinosteroids by the Extracellular Domain of the Receptor Kinase BRI1. Science, 2000, 288, 2360-2363.	12.6	439
18	PP2A activates brassinosteroid-responsive geneÂexpression and plant growth by dephosphorylatingÂBZR1. Nature Cell Biology, 2011, 13, 124-131.	10.3	438

#	Article	IF	Citations
19	An Essential Role for 14-3-3 Proteins in Brassinosteroid Signal Transduction in Arabidopsis. Developmental Cell, 2007, 13, 177-189.	7.0	427
20	Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and <i>Arabidopsis </i> A Â Â Plant Cell, 2010, 21, 3767-3780.	6.6	425
21	Brassinosteroid Signaling Network and Regulation of Photomorphogenesis. Annual Review of Genetics, 2012, 46, 701-724.	7.6	410
22	A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene Plant Cell, 1997, 9, 491-507.	6.6	404
23	Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13839-13844.	7.1	362
24	Structural insight into brassinosteroid perception by BRI1. Nature, 2011, 474, 472-476.	27.8	350
25	Circadian Rhythms Confer a Higher Level of Fitness to Arabidopsis Plants. Plant Physiology, 2002, 129, 576-584.	4.8	338
26	The CDG1 Kinase Mediates Brassinosteroid Signal Transduction from BRI1 Receptor Kinase to BSU1 Phosphatase and GSK3-like Kinase BIN2. Molecular Cell, 2011, 43, 561-571.	9.7	310
27	Brassinosteroid signalling. Development (Cambridge), 2013, 140, 1615-1620.	2.5	283
28	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	7.1	233
29	Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots. Current Biology, 2015, 25, 1031-1042.	3.9	230
30	Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11020-11025.	7.1	227
31	A mutually assured destruction mechanism attenuates light signaling in <i>Arabidopsis</i> . Science, 2014, 344, 1160-1164.	12.6	220
32	Integration of Light- and Brassinosteroid-Signaling Pathways by a GATA Transcription Factor in Arabidopsis. Developmental Cell, 2010, 19, 872-883.	7.0	219
33	Information Integration and Communication in Plant Growth Regulation. Cell, 2016, 164, 1257-1268.	28.9	217
34	<i>OsGSR1</i> is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant Journal, 2009, 57, 498-510.	5.7	204
35	Brassinosteroid Regulates Seed Size and Shape in Arabidopsis. Plant Physiology, 2013, 162, 1965-1977.	4.8	204
36	TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis. Current Biology, 2016, 26, 1854-1860.	3.9	201

3

#	Article	IF	Citations
37	A Triple Helix-Loop-Helix/Basic Helix-Loop-Helix Cascade Controls Cell Elongation Downstream of Multiple Hormonal and Environmental Signaling Pathways in <i>Arabidopsis</i> Ââ. Plant Cell, 2013, 24, 4917-4929.	6.6	197
38	Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nature Genetics, 2016, 48, 687-693.	21.4	193
39	The bHLH Transcription Factor HBI1 Mediates the Trade-Off between Growth and Pathogen-Associated Molecular Pattern–Triggered Immunity in <i>Arabidopsis</i>	6.6	191
40	Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 2018, 9, 1063.	12.8	169
41	TOC1 $\hat{a}\in \text{``PIF4'}$ interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nature Communications, 2016, 7, 13692.	12.8	163
42	Brassinosteroids regulate organ boundary formation in the shoot apical meristem of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21152-21157.	7.1	156
43	Circadian Rhythms of Ethylene Emission in Arabidopsis. Plant Physiology, 2004, 136, 3751-3761.	4.8	147
44	A Proteomics Study of Brassinosteroid Response in Arabidopsis. Molecular and Cellular Proteomics, 2007, 6, 2058-2071.	3.8	147
45	Interactions between HLH and bHLH Factors Modulate Light-Regulated Plant Development. Molecular Plant, 2012, 5, 688-697.	8.3	146
46	CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis Â. Plant Physiology, 2012, 158, 1079-1088.	4.8	145
47	The brassinosteroid signaling network â€" a paradigm of signal integration. Current Opinion in Plant Biology, 2014, 21, 147-153.	7.1	135
48	Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a <scp>MYB</scp> domain protein. Plant Journal, 2015, 82, 570-581.	5.7	132
49	PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nature Communications, 2017, 8, 15236.	12.8	132
50	BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Molecular Plant, 2012, 5, 591-600.	8.3	131
51	Proteomics Studies of Brassinosteroid Signal Transduction Using Prefractionation and Two-dimensional DIGE. Molecular and Cellular Proteomics, 2008, 7, 728-738.	3.8	126
52	Multisite Light-Induced Phosphorylation of the Transcription Factor PIF3 Is Necessary for Both Its Rapid Degradation and Concomitant Negative Feedback Modulation of Photoreceptor phyB Levels in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ Ârabidopsis Clark Cell, 2013, 25, 2679-2698.	6.6	124
53	Multiple mechanisms modulate brassinosteroid signaling. Current Opinion in Plant Biology, 2007, 10, 436-441.	7.1	122
54	New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1 Promoter and Other Aluminum-Responsive Genes. Molecular Plant, 2014, 7, 709-721.	8.3	117

#	Article	IF	CITATIONS
55	TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nature Communications, 2014, 5, 4140.	12.8	113
56	Brassinosteroid signal transduction – choices of signals and receptors. Trends in Plant Science, 2004, 9, 91-96.	8.8	109
57	<i>Arabidopsis</i> MICROTUBULE DESTABILIZING PROTEIN40 Is Involved in Brassinosteroid Regulation of Hypocotyl Elongation. Plant Cell, 2012, 24, 4012-4025.	6.6	109
58	The F-box Protein KIB1 Mediates Brassinosteroid-Induced Inactivation and Degradation of GSK3-like Kinases in Arabidopsis. Molecular Cell, 2017, 66, 648-657.e4.	9.7	107
59	Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant Journal, 2007, 51, 512-525.	5.7	106
60	Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9171-9176.	7.1	104
61	Brassinosteroids modulate plant immunity at multiple levels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7-8.	7.1	103
62	BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 2013, 6, 456-469.	8.3	101
63	Proteomic analysis reveals O-GlcNAc modification on proteins with key regulatory functions in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1536-E1543.	7.1	101
64	A Myb-Related Transcription Factor Is Involved in the Phytochrome Regulation of an Arabidopsis Lhcb Gene. Plant Cell, 1997, 9, 491.	6.6	79
65	Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Cell Research, 2012, 22, 1304-1308.	12.0	78
66	The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Journal of Genetics and Genomics, 2016, 43, 555-563.	3.9	75
67	Rice <i>ASR1 </i> and <i>ASR5 </i> are complementary transcription factors regulating aluminium responsive genes. Plant, Cell and Environment, 2016, 39, 645-651.	5.7	75
68	The brassinosteroid signal transduction pathway. Cell Research, 2006, 16, 427-434.	12.0	73
69	The Brassinosteroid-Activated BRI1 Receptor Kinase Is Switched off by Dephosphorylation Mediated by Cytoplasm-Localized PP2A B′ Subunits. Molecular Plant, 2016, 9, 148-157.	8.3	64
70	Brassinosteroid action in flowering plants: a Darwinian perspective. Journal of Experimental Botany, 2012, 63, 3511-3522.	4.8	63
71	Chemical Genetic Dissection of Brassinosteroid–Ethylene Interaction. Molecular Plant, 2008, 1, 368-379.	8.3	61
72	Proteomics shed light on the brassinosteroid signaling mechanisms. Current Opinion in Plant Biology, 2010, 13, 27-33.	7.1	60

#	Article	IF	Citations
73	PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Current Biology, 2020, 30, 1579-1588.e6.	3.9	58
74	Identification of BZR1-interacting Proteins as Potential Components of the Brassinosteroid Signaling Pathway in Arabidopsis Through Tandem Affinity Purification. Molecular and Cellular Proteomics, 2013, 12, 3653-3665.	3.8	57
75	Prefoldin 6 is required for normal microtubule dynamics and organization in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18064-18069.	7.1	56
76	Proteomic Analysis of Brassica Stigmatic Proteins Following the Self-incompatibility Reaction Reveals a Role for Microtubule Dynamics During Pollen Responses. Molecular and Cellular Proteomics, 2011, 10, M111.011338.	3.8	56
77	Genome-Wide Identification of Transcription Factor-Binding Sites in Plants Using Chromatin Immunoprecipitation Followed by Microarray (ChIP-chip) or Sequencing (ChIP-seq). Methods in Molecular Biology, 2011, 876, 173-188.	0.9	55
78	Plant U-Box40 Mediates Degradation of the Brassinosteroid-Responsive Transcription Factor BZR1 in Arabidopsis Roots. Plant Cell, 2019, 31, 791-808.	6.6	55
79	DWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice. PLoS Genetics, 2014, 10, e1004154.	3.5	54
80	Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Research, 2009, 37, D975-D982.	14.5	52
81	Proteomics Analysis Reveals Post-Translational Mechanisms for Cold-Induced Metabolic Changes in Arabidopsis. Molecular Plant, 2011, 4, 361-374.	8.3	47
82	Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma, 2016, 253, 3-14.	2.1	45
83	At the Intersection of Plant Growth and Immunity. Cell Host and Microbe, 2014, 15, 400-402.	11.0	44
84	N-Glycopeptide Profiling in Arabidopsis Inflorescence. Molecular and Cellular Proteomics, 2016, 15, 2048-2054.	3.8	41
85	A Brassinosteroid-Signaling Kinase Interacts with Multiple Receptor-Like Kinases in Arabidopsis. Molecular Plant, 2014, 7, 441-444.	8.3	40
86	Arabidopsis ACINUS is O-glycosylated and regulates transcription and alternative splicing of regulators of reproductive transitions. Nature Communications, 2021, 12, 945.	12.8	36
87	Blue Light-Induced Proteomic Changes in Etiolated <i>Arabidopsis</i> Seedlings. Journal of Proteome Research, 2014, 13, 2524-2533.	3.7	35
88	Genetic Linkage Map Construction and QTL Mapping of Salt Tolerance Traits in Zoysiagrass (Zoysia) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf 5
89	Immunophilin-like FKBP42/TWISTED DWARF1 Interacts with the Receptor Kinase BRI1 to Regulate Brassinosteroid Signaling in Arabidopsis. Molecular Plant, 2016, 9, 593-600.	8.3	31
90	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31

#	Article	IF	CITATIONS
91	The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Current Biology, 2022, 32, 2454-2466.e7.	3.9	30
92	Identification of Arabidopsis BAK1-Associating Receptor-Like Kinase 1 (BARK1) and Characterization of its Gene Expression and Brassinosteroid-Regulated Root Phenotypes. Plant and Cell Physiology, 2013, 54, 1620-1634.	3.1	29
93	Proteomic Study Identifies Proteins Involved in Brassinosteroid Regulation of Rice Growth. Journal of Integrative Plant Biology, 2010, 52, 1075-1085.	8.5	28
94	Oligomerization between BSU1 Family Members Potentiates Brassinosteroid Signaling in Arabidopsis. Molecular Plant, 2016, 9, 178-181.	8.3	27
95	A spatiotemporal molecular switch governs plant asymmetric cell division. Nature Plants, 2021, 7, 667-680.	9.3	27
96	Rice ROOT ARCHITECTURE ASSOCIATED1 Binds the Proteasome Subunit RPT4 and Is Degraded in a D-Box and Proteasome-Dependent Manner Â. Plant Physiology, 2008, 148, 843-855.	4.8	25
97	Genetic transformation of green-colored cotton. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 439-444.	2.1	24
98	TRIPP Is a Plant-Specific Component of the Arabidopsis TRAPPII Membrane Trafficking Complex with Important Roles in Plant Development. Plant Cell, 2020, 32, 2424-2443.	6.6	24
99	Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: A quantitative proteomic analysis. Plant Signaling and Behavior, 2010, 5, 509-517.	2.4	22
100	Mutual Regulation of Receptor-Like Kinase SIT1 and B'κ-PP2A Shapes the Early Response of Rice to Salt Stress. Plant Cell, 2019, 31, 2131-2151.	6.6	21
101	Structural and Functional Characterization of Arabidopsis GSK3-like Kinase AtSK12. Molecules and Cells, 2013, 36, 564-570.	2.6	20
102	Cyclophilin OsCYP20†with a novel variant integrates defense and cell elongation for chilling response in rice. New Phytologist, 2020, 225, 2453-2467.	7.3	19
103	Sugar inhibits brassinosteroid signaling by enhancing BIN2 phosphorylation of BZR1. PLoS Genetics, 2021, 17, e1009540.	3.5	18
104	Rapid auxinâ€mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth. Plant Biology, 2012, 14, 420-427.	3.8	17
105	ANAC005 is a membraneâ€associated transcription factor and regulates vascular development in ⟨i>Arabidopsis⟨ i>. Journal of Integrative Plant Biology, 2016, 58, 442-451.	8.5	15
106	Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. Plant Physiology, 2021, 186, 534-548.	4.8	14
107	Immunopurification and Mass Spectrometry Identifies Protein Phosphatase 2A (PP2A) and BIN2/GSK3 as Regulators of AKS Transcription Factors in Arabidopsis. Molecular Plant, 2017, 10, 345-348.	8.3	13
108	AtOFPs regulate cell elongation by modulating microtubule orientation via direct interaction with TONNEAU2. Plant Science, 2020, 292, 110405.	3.6	13

#	Article	IF	Citations
109	Genome-wide transcriptional profiling for elucidating the effects of brassinosteroids on Glycine max during early vegetative development. Scientific Reports, 2019, 9, 16085.	3.3	12
110	Identification of O-linked \hat{l}^2 -d-N-acetylglucosamine-Modified Proteins from Arabidopsis. Methods in Molecular Biology, 2011, 876, 33-45.	0.9	11
111	Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage (Brassica) Tj ETQq1 1 0.	.784314 r ₂ .3	gBT/Overlac
112	GmBZL3 acts as a major BR signaling regulator through crosstalk with multiple pathways in Glycine max. BMC Plant Biology, 2019, 19, 86.	3.6	10
113	15N Metabolic Labeling Quantification Workflow in Arabidopsis Using Protein Prospector. Frontiers in Plant Science, 2022, 13, 832562.	3.6	10
114	Deconvoluting signals downstream of growth and immune receptor kinases by phosphocodes of the BSU1 family phosphatases. Nature Plants, 2022, 8, 646-655.	9.3	10
115	Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachys edulis) seedlings. Planta, 2020, 252, 27.	3.2	9
116	Quantitative Proteomics Reveals that GmENO2 Proteins Are Involved in Response to Phosphate Starvation in the Leaves of Glycine max L International Journal of Molecular Sciences, 2021, 22, 920.	4.1	9
117	Activation of TOR signaling by diverse nitrogen signals in plants. Developmental Cell, 2021, 56, 1213-1214.	7.0	9
118	Quantitative Analysis of Protein Phosphorylation Using Two-Dimensional Difference Gel Electrophoresis. Methods in Molecular Biology, 2011, 876, 47-66.	0.9	7
119	The molecular circuit of steroid signalling in plants. Essays in Biochemistry, 2015, 58, 71-82.	4.7	6
120	Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile. Protoplasma, 2017, 254, 1317-1322.	2.1	5
121	PSBR1, encoding a mitochondrial protein, is regulated by brassinosteroid in moso bamboo (Phyllostachys edulis). Plant Molecular Biology, 2020, 103, 63-74.	3.9	5
122	Isotopically Dimethyl Labeling-Based Quantitative Proteomic Analysis of Phosphoproteomes of Soybean Cultivars. Biomolecules, 2021, 11, 1218.	4.0	5
123	Recent Advances in Molecular Genetic Studies of the Functions of Brassinolide, A Steroid Hormone in Plants. Recent Advances in Phytochemistry, 2000, , 409-431.	0.5	3
124	Light and plant development: the discovery of phototropins by Winslow R. Briggs (1928–2019). Plant Signaling and Behavior, 2019, 14, e1652521.	2.4	3
125	First plant cell atlas workshop report. Plant Direct, 2020, 4, e00271.	1.9	3
126	From receptors to responses. Current Opinion in Plant Biology, 2010, 13, 485-488.	7.1	2

ZHI-YONG WANG

#	Article	IF	CITATIONS
127	Binding Assays for Brassinosteroid Receptors. Methods in Molecular Biology, 2009, 495, 81-88.	0.9	2
128	Rice Arsenal Against Aluminum Toxicity. Signaling and Communication in Plants, 2015, , 155-168.	0.7	1
129	126Gln is the residue of human IL-2 binding to IL-2R \hat{l}^3 subunit. Science in China Series C: Life Sciences, 1997, 40, 159-168.	1.3	O