Mathias Ziegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>POLG</i> mutations lead to abnormal mitochondrial remodeling during neural differentiation of human pluripotent stem cells via SIRT3/AMPK pathway inhibition. Cell Cycle, 2022, 21, 1178-1193.	2.6	3
2	Early Evolutionary Selection of NAD Biosynthesis Pathway in Bacteria. Metabolites, 2022, 12, 569.	2.9	3
3	Comparing the mitochondrial signatures in ESCs and iPSCs and their neural derivations. Cell Cycle, 2022, 21, 2206-2221.	2.6	3
4	Equilibrative Nucleoside Transporters Mediate the Import of Nicotinamide Riboside and Nicotinic Acid Riboside into Human Cells. International Journal of Molecular Sciences, 2021, 22, 1391.	4.1	32
5	Discovery of fungal surface NADases predominantly present in pathogenic species. Nature Communications, 2021, 12, 1631.	12.8	6
6	Welcome to the Family: Identification of the NAD+ Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules, 2021, 11, 880.	4.0	18
7	Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD. Biomolecules, 2021, 11, 1044.	4.0	12
8	Instability in NAD+ metabolism leads to impaired cardiac mitochondrial function and communication. ELife, 2021, 10, .	6.0	19
9	Combined Metabolic and Chemical (CoMetChem) Labeling Using Stable Isotopes—a Strategy to Reveal Site-Specific Histone Acetylation and Deacetylation Rates by LC–MS. Analytical Chemistry, 2021, 93, 12872-12880.	6.5	2
10	The balance between NAD+ biosynthesis and consumption in ageing. Mechanisms of Ageing and Development, 2021, 199, 111569.	4.6	28
11	SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature, 2020, 588, 174-179.	27.8	158
12	Targeting NAD+ in translational research to relieve diseases and conditions of metabolic stress and ageing. Mechanisms of Ageing and Development, 2020, 186, 111208.	4.6	31
13	NAD on the rise again. Nature Metabolism, 2020, 2, 291-292.	11.9	5
14	Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon, 2020, 6, e03733.	3.2	1
15	Diseaseâ€specific phenotypes in <scp>iPSC</scp> â€derived neural stem cells with <i> <scp>POLG</scp> </i> mutations. EMBO Molecular Medicine, 2020, 12, e12146.	6.9	38
16	Identification of evolutionary and kinetic drivers of NAD-dependent signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15957-15966.	7.1	43
17	Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight, 2019, 4, .	5.0	22
18	Degradation of Extracellular NAD+ Intermediates in Cultures of Human HEK293 Cells. Metabolites, 2019. 9. 293.	2.9	32

#	Article	IF	CITATIONS
19	Keeping the balance in NAD metabolism. Biochemical Society Transactions, 2019, 47, 119-130.	3.4	58
20	Identification of the Nicotinamide Salvage Pathway as a New Toxification Route for Antimetabolites. Cell Chemical Biology, 2018, 25, 471-482.e7.	5.2	55
21	NAD Metabolome Analysis in Human Cells Using 1H NMR Spectroscopy. International Journal of Molecular Sciences, 2018, 19, 3906.	4.1	24
22	N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2018, 17, 2309-2323.	3.8	25
23	Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools. Methods in Molecular Biology, 2017, 1608, 45-56.	0.9	9
24	SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. Journal of Cell Science, 2016, 129, 2972-82.	2.0	27
25	Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells. Journal of Biological Chemistry, 2015, 290, 27124-27137.	3.4	68
26	NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1386-1391.	7.1	49
27	An Organellar Nα-Acetyltransferase, Naa60, Acetylates Cytosolic N Termini of Transmembrane Proteins and Maintains Golgi Integrity. Cell Reports, 2015, 10, 1362-1374.	6.4	105
28	The human NAD metabolome: Functions, metabolism and compartmentalization. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 284-297.	5.2	183
29	Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells. Journal of Biological Chemistry, 2015, 290, 27644-27659.	3.4	58
30	Sequence divergence and diversity suggests ongoing functional diversification of vertebrate NAD metabolism. DNA Repair, 2014, 23, 39-48.	2.8	15
31	Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nature Communications, 2014, 5, 3936.	12.8	428
32	Carbohydrate metabolism during vertebrate appendage regeneration: What is its role? How is it regulated?. BioEssays, 2014, 36, 27-33.	2.5	43
33	The PHD finger of p300 Influences Its Ability to Acetylate Histone and Non-Histone Targets. Journal of Molecular Biology, 2014, 426, 3960-3972.	4.2	26
34	Constitutive Nuclear Localization of an Alternatively Spliced Sirtuin-2 Isoform. Journal of Molecular Biology, 2014, 426, 1677-1691.	4.2	48
35	Regulation of SIRT2-dependent α-tubulin deacetylation by cellular NAD levels. DNA Repair, 2014, 23, 33-38.	2.8	51
36	Pharmacology of ADP-ribosylation. FEBS Journal, 2013, 280, 3542-3542.	4.7	2

3

#	Article	IF	CITATIONS
37	Model of Tryptophan Metabolism, Readily Scalable Using Tissue-specific Gene Expression Data. Journal of Biological Chemistry, 2013, 288, 34555-34566.	3.4	48
38	<scp>NAD</scp> and <scp>ADP</scp> â€ribose metabolism in mitochondria. FEBS Journal, 2013, 280, 3530-3541.	4.7	86
39	Physiology of ADP-ribosylation. FEBS Journal, 2013, 280, 3483-3483.	4.7	2
40	NAD Biosynthesis in Humans - Enzymes, Metabolites and Therapeutic Aspects. Current Topics in Medicinal Chemistry, 2013, 13, 2907-2917.	2.1	56
41	ADP-ribosylhydrolase 3 (ARH3), Not Poly(ADP-ribose) Glycohydrolase (PARG) Isoforms, Is Responsible for Degradation of Mitochondrial Matrix-associated Poly(ADP-ribose). Journal of Biological Chemistry, 2012, 287, 16088-16102.	3.4	96
42	The NAD metabolome — a key determinant of cancer cell biology. Nature Reviews Cancer, 2012, 12, 741-752.	28.4	487
43	NAD ⁺ biosynthesis and salvage – a phylogenetic perspective. FEBS Journal, 2012, 279, 3355-3363.	4.7	47
44	ARH3 catalyzes degradation of mitochondrial matrixaccumulated Poly (ADPâ€ribose). FASEB Journal, 2012, 26, 565.9.	0.5	0
45	Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells. Journal of Biological Chemistry, 2011, 286, 21767-21778.	3.4	262
46	Progress in the Function and Regulation of ADP-RibosylationA report on the 18th International Conference on ADP-Ribosylation, Zurich, Switzerland, 18 to 21 August 2010 Science Signaling, 2011, 4, mr5.	3.6	23
47	Pathway analysis of NAD+ metabolism. Biochemical Journal, 2011, 439, 341-348.	3.7	53
48	Compartmentation of NAD ⁺ â€dependent signalling. FEBS Letters, 2011, 585, 1651-1656.	2.8	108
49	Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cellular and Molecular Life Sciences, 2010, 67, 433-443.	5.4	66
50	The phosphate makes a difference: cellular functions of NADP. Redox Report, 2010, 15, 2-10.	4.5	151
51	lsoform-specific Targeting and Interaction Domains in Human Nicotinamide Mononucleotide Adenylyltransferases. Journal of Biological Chemistry, 2010, 285, 18868-18876.	3.4	54
52	Human Naa50p (Nat5/San) Displays Both Protein Nα- and Nϵ-Acetyltransferase Activity. Journal of Biological Chemistry, 2009, 284, 31122-31129.	3.4	90
53	Application of reverse-phase HPLC to quantify oligopeptide acetylation eliminates interference from unspecific acetyl CoA hydrolysis. BMC Proceedings, 2009, 3, S5.	1.6	19
54	Proteomic response of human neuroblastoma cells to azaspiracid-1. Journal of Proteomics, 2009, 72, 695-707.	2.4	28

#	Article	IF	CITATIONS
55	Application of a coupled enzyme assay to characterize nicotinamide riboside kinases. Analytical Biochemistry, 2009, 385, 377-379.	2.4	16
56	Reconstitution of Yeast Silent Chromatin: Multiple Contact Sites and O-AADPR Binding Load SIR Complexes onto Nucleosomes In Vitro. Molecular Cell, 2009, 33, 323-334.	9.7	103
57	The NMN/NaMN adenylyltransferase (NMNAT) protein family. Frontiers in Bioscience - Landmark, 2009, Volume, 410.	3.0	101
58	Emerging Roles of NAD ⁺ and Its Metabolites in Cell SignalingA report on the NAD2008 symposium, Hamburg, Germany, 14 to 17 September 2008 Science Signaling, 2009, 2, mr1.	3.6	71
59	Functional Localization of Two Poly(ADP-Ribose)-Degrading Enzymes to the Mitochondrial Matrix. Molecular and Cellular Biology, 2008, 28, 814-824.	2.3	95
60	Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3765-3770.	7.1	97
61	NAD Kinase Levels Control the NADPH Concentration in Human Cells. Journal of Biological Chemistry, 2007, 282, 33562-33571.	3.4	157
62	The power to reduce: pyridine nucleotides $\hat{a} \in $ small molecules with a multitude of functions. Biochemical Journal, 2007, 402, 205-218.	3.7	607
63	Refinement of a radioreceptor binding assay for nicotinic acid adenine dinucleotide phosphate. Analytical Biochemistry, 2007, 371, 26-36.	2.4	28
64	Emerging Functions of Extracellular Pyridine Nucleotides. Molecular Medicine, 2006, 12, 324-327.	4.4	70
65	Time sensing by NAADP receptors. Biochemical Journal, 2006, 397, 313-320.	3.7	12
66	NAD: Metabolism and Regulatory Functions. , 2006, , 132-140.		2
67	A vital link between energy and signal transduction. Regulatory functions of NAD(P). FEBS Journal, 2005, 272, 4561-4564.	4.7	20
68	Subcellular Compartmentation and Differential Catalytic Properties of the Three Human Nicotinamide Mononucleotide Adenylyltransferase Isoforms. Journal of Biological Chemistry, 2005, 280, 36334-36341.	3.4	414
69	Poly(ADP-ribosylation) and genomic stability. Biochemistry and Cell Biology, 2005, 83, 263-269.	2.0	51
70	NAD $\hat{a} \in \hat{a}$ new roles in signalling and gene regulation in plants. New Phytologist, 2004, 163, 31-44.	7.3	122
71	The new life of a centenarian: signalling functions of NAD(P). Trends in Biochemical Sciences, 2004, 29, 111-118.	7.5	445
72	NAD+ surfaces again. Biochemical Journal, 2004, 382, e5-6.	3.7	35

5

#	Article	IF	CITATIONS
73	ATP-dependent selection between single nucleotide and long patch base excision repair. DNA Repair, 2003, 2, 1101-1114.	2.8	61
74	Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN. FEBS Letters, 2002, 516, 239-244.	2.8	36
75	Corrigendum to: Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN (FEBS 25964). FEBS Letters, 2002, 523, 254-255.	2.8	Ο
76	Crystallization and preliminary X-ray analysis of human nicotinamide mononucleotide adenylyltransferase (NMNAT). Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 140-142.	2.5	2
77	Structural and Functional Characterization of Human NAD Kinase. Biochemical and Biophysical Research Communications, 2001, 288, 69-74.	2.1	160
78	Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis. FEBS Letters, 2001, 492, 95-100.	2.8	111
79	Pathophysiological relevance of mitochondria in NAD+metabolism. FEBS Letters, 2001, 492, 4-8.	2.8	148
80	Insect Immune Activation by Apolipophorin III Is Correlated with the Lipid-Binding Properties of This Proteinâ€. Biochemistry, 2001, 40, 11502-11508.	2.5	63
81	A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. BioEssays, 2001, 23, 543-548.	2.5	114
82	ATP for the DNA Ligation Step in Base Excision Repair Is Generated from Poly(ADP-ribose). Journal of Biological Chemistry, 2000, 275, 23234-23239.	3.4	126
83	New functions of a long-known molecule. FEBS Journal, 2000, 267, 1550-1564.	0.2	263
84	Insect immune activation by recombinant Galleria mellonella apolipophorin III. BBA - Proteins and Proteomics, 1999, 1433, 16-26.	2.1	77
85	Stimulation of the catalytic activity of poly(ADP-ribosyl) transferase by transcription factor Yin Yang 1. FEBS Letters, 1999, 443, 20-24.	2.8	39
86	Functional Interaction of Poly(ADP-ribose) with the 20S Proteasome in Vitro. Biochemical and Biophysical Research Communications, 1999, 259, 576-581.	2.1	33
87	A Novel Function of Poly(ADP-ribosyl)ation: Silencing of RNA Polymerase II-Dependent Transcriptionâ€. Biochemistry, 1998, 37, 1465-1469.	2.5	68
88	Regulation of RNA Polymerase II-dependent Transcription by Poly(ADP-ribosyl)ation of Transcription Factors. Journal of Biological Chemistry, 1998, 273, 31644-31647.	3.4	114
89	Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria. Biochemical Journal, 1998, 332, 189-193.	3.7	22
90	Identification of bovine liver mitochondrial NAD+ glycohydrolase as ADP-ribosyl cyclase. Biochemical Journal, 1997, 326, 401-405.	3.7	52

#	Article	IF	CITATIONS
91	Proteinâ `Protein Interaction of the Human Poly(ADP-ribosyl)transferase Depends on the Functional State of the Enzyme. Biochemistry, 1997, 36, 7297-7304.	2.5	49
92	Detection and identification of NAD-catabolizing activities in rat tissue homogenates. BBA - Proteins and Proteomics, 1997, 1340, 7-12.	2.1	10
93	Bovine Liver Mitochondrial NAD+ Glycohydrolase. Advances in Experimental Medicine and Biology, 1997, , 443-446.	1.6	4
94	Characterization of Hydrosoluble and Detergent-Solubilized Forms of Mitochondrial NAD+ Glycohydrolase from Bovine Liver. Advances in Experimental Medicine and Biology, 1997, 419, 447-451.	1.6	5
95	Characterization of Detergent-Solubilized Beef Liver Mitochondrial NAD+ Glycohydrolase and Its Truncated Hydrosoluble Form. Biochemistry, 1996, 35, 5207-5212.	2.5	24
96	NAD+analogs substituted in the purine base as substrates for poly(ADP-ribosyl) transferase. FEBS Letters, 1996, 397, 17-21.	2.8	22
97	Application of ion-pair high-performance liquid chromatography with radioisotope detection to in vitro studies of nucleoside metabolism in mitochondria. Biomedical Applications, 1991, 563, 172-177.	1.7	5
98	Mechanisms Accounting for Changes of Adenine Nucleotide Content in Mitochondria at Ischemia. Advances in Experimental Medicine and Biology, 1991, 309A, 309-312.	1.6	1
99	Dynamics in the Purine Nucleotides of Liver During Various Periods of Hypoxia/Ischaemia and Reoxygenation. Advances in Experimental Medicine and Biology, 1991, 309A, 259-264.	1.6	0
100	The catabolism of endogenous adenine nucleotides in rat liver mitochondria. Molecular and Cellular Biochemistry, 1990, 93, 7-12.	3.1	10
101	Mitochondrial metabolism of guanine nucleotides possible role of guanosine. FEBS Letters, 1989, 248, 182-184.	2.8	6
102	Adenosine formation by isolated rat kidney mitochondria. FEBS Letters, 1989, 254, 5-7.	2.8	7
103	Optimization of the ion-pair high-performance liquid chromatographic separation of purine derivatives in erythrocytes, thymocytes and liver mitochondria. Biomedical Applications, 1988, 434, 447-453.	1.7	17