
Arvind H Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9383737/publications.pdf Version: 2024-02-01

Δονινίο Η Ρλτεί

#	Article	IF	CITATIONS
1	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	12.6	508
2	SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nature Microbiology, 2022, 7, 1161-1179.	13.3	352
3	Monoclonal Antibody AP33 Defines a Broadly Neutralizing Epitope on the Hepatitis C Virus E2 Envelope Glycoprotein. Journal of Virology, 2005, 79, 11095-11104.	3.4	262
4	Identification of Conserved Residues in the E2 Envelope Glycoprotein of the Hepatitis C Virus That Are Critical for CD81 Binding. Journal of Virology, 2006, 80, 8695-8704.	3.4	232
5	Human Monoclonal Antibodies to a Novel Cluster of Conformational Epitopes on HCV E2 with Resistance to Neutralization Escape in a Genotype 2a Isolate. PLoS Pathogens, 2012, 8, e1002653.	4.7	201
6	Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Neglected Tropical Diseases, 2016, 10, e0005048.	3.0	193
7	Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. Journal of General Virology, 2001, 82, 1877-1883.	2.9	170
8	A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 2021, 19, e3001091.	5.6	163
9	Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Research, 2008, 36, 4708-4718.	14.5	158
10	Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33. Hepatology, 2006, 43, 592-601.	7.3	150
11	Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein. Journal of General Virology, 2008, 89, 653-659.	2.9	144
12	Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathogens, 2021, 17, e1010022.	4.7	139
13	Analysis of Antigenicity and Topology of E2 Glycoprotein Present on Recombinant Hepatitis C Virus-Like Particles. Journal of Virology, 2002, 76, 7672-7682.	3.4	134
14	Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. Journal of Experimental Medicine, 2010, 207, 2019-2031.	8.5	125
15	In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009929.	4.7	108
16	Glycan Shifting on Hepatitis C Virus (HCV) E2 Glycoprotein Is a Mechanism for Escape from Broadly Neutralizing Antibodies. Journal of Molecular Biology, 2013, 425, 1899-1914.	4.2	105
17	Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. Journal of General Virology, 2010, 91, 122-132.	2.9	96
18	Toward a Hepatitis C Virus Vaccine: the Structural Basis of Hepatitis C Virus Neutralization by AP33, a Broadly Neutralizing Antibody. Journal of Virology, 2012, 86, 12923-12932.	3.4	89

ARVIND H PATEL

#	Article	IF	CITATIONS
19	Immunogenic and Functional Organization of Hepatitis C Virus (HCV) Glycoprotein E2 on Infectious HCV Virions. Journal of Virology, 2007, 81, 1043-1047.	3.4	84
20	KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Science Immunology, 2017, 2, .	11.9	78
21	Construction and characterization of chimeric hepatitis C virus E2 glycoproteins: analysis of regions critical for glycoprotein aggregation and CD81 binding. Journal of General Virology, 2000, 81, 2873-2883.	2.9	72
22	Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nature Communications, 2018, 9, 2441.	12.8	69
23	Determination of the human antibody response to the epitope defined by the hepatitis C virus-neutralizing monoclonal antibody AP33. Journal of General Virology, 2007, 88, 2991-3001.	2.9	61
24	A reporter cell line for rapid and sensitive evaluation of hepatitis C virus infectivity and replication. Antiviral Research, 2009, 83, 148-155.	4.1	48
25	Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Reports, 2022, 38, 110344.	6.4	46
26	Diversification of mammalian deltaviruses by host shifting. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41
27	Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein. Journal of General Virology, 2000, 81, 2999-3009.	2.9	41
28	Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422. Journal of Virology, 2016, 90, 3745-3759.	3.4	39
29	Conformational Flexibility in the Immunoglobulin-Like Domain of the Hepatitis C Virus Glycoprotein E2. MBio, 2017, 8, .	4.1	31
30	Monoclonal antiâ€envelope antibody AP33 protects humanized mice against a patientâ€derived hepatitis C virus challenge. Hepatology, 2016, 63, 1120-1134.	7.3	30
31	Analysis of the binding of hepatitis C virus genotype 1a and 1b E2 glycoproteins to peripheral blood mononuclear cell subsets. Journal of General Virology, 2005, 86, 2507-2512.	2.9	28
32	Broad Anti-Hepatitis C Virus (HCV) Antibody Responses Are Associated with Improved Clinical Disease Parameters in Chronic HCV Infection. Journal of Virology, 2016, 90, 4530-4543.	3.4	28
33	Expression of hepatitis C virus (HCV) structural proteins in trans facilitates encapsidation and transmission of HCV subgenomic RNA. Journal of General Virology, 2009, 90, 833-842.	2.9	23
34	Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer. OncoTargets and Therapy, 2017, Volume 10, 3501-3513.	2.0	22
35	A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo. Antiviral Research, 2017, 148, 53-64.	4.1	18
36	Immunogenicity and Efficacy of Zika Virus Envelope Domain III in DNA, Protein, and ChAdOx1 Adenoviral-Vectored Vaccines. Vaccines, 2020, 8, 307.	4.4	18

ARVIND H PATEL

#	Article	IF	CITATIONS
37	Conserved Glycine 33 Residue in Flexible Domain I of Hepatitis C Virus Core Protein Is Critical for Virus Infectivity. Journal of Virology, 2012, 86, 679-690.	3.4	17
38	Immunotherapeutic potential of neutralizing antibodies targeting conserved regions of the HCV envelope glycoprotein E2. Future Microbiology, 2011, 6, 279-294.	2.0	16
39	Exploration of acetanilide derivatives of 1-(ω-phenoxyalkyl)uracils as novel inhibitors of Hepatitis C Virus replication. Scientific Reports, 2016, 6, 29487.	3.3	15
40	Zika Virus-Like Particles Bearing a Covalent Dimer of Envelope Protein Protect Mice from Lethal Challenge. Journal of Virology, 2020, 95, .	3.4	13
41	Immobilization by Surface Conjugation of Cyclic Peptides for Effective Mimicry of the HCV-Envelope E2 Protein as a Strategy toward Synthetic Vaccines. Bioconjugate Chemistry, 2018, 29, 1091-1101.	3.6	12
42	Predicting the Effectiveness of Hepatitis C Virus Neutralizing Antibodies by Bioinformatic Analysis of Conserved Epitope Residues Using Public Sequence Data. Frontiers in Immunology, 2018, 9, 1470.	4.8	11
43	Development of a structural epitope mimic: an idiotypic approach to HCV vaccine design. Npj Vaccines, 2021, 6, 7.	6.0	10
44	HCV Activates Somatic L1 Retrotransposition—A Potential Hepatocarcinogenesis Pathway. Cancers, 2021, 13, 5079.	3.7	7
45	Evidence for structural differences in the S domain of L in comparison with S protein of hepatitis B virus. Journal of General Virology, 2001, 82, 1533-1541.	2.9	5
46	Exploration of immunological responses underpinning severe fever with thrombocytopenia syndrome virus infection reveals IL-6 as a therapeutic target in an immunocompromised mouse model. , 2022, 1, pgac024.		5
47	Improving the aqueous solubility of HCV‣2 glycoprotein epitope mimics by cyclization using POLAR hinges. Journal of Peptide Science, 2020, 26, e3222.	1.4	2
48	Design and Synthesis of HCV-E2 Glycoprotein Epitope Mimics in Molecular Construction of Potential Synthetic Vaccines. Viruses, 2021, 13, 326.	3.3	2
49	HCV requires a tight junction-associated protein for cell entry. Future Virology, 2007, 2, 335-338.	1.8	1
50	The Neutralizing Antibody Responses of Individuals That Spontaneously Resolve Hepatitis C Virus Infection. Viruses, 2022, 14, 1391.	3.3	0